The Formwork Experts.

DokaTruss table

User Information
Instructions for assembly and use
Contents

4 Introduction
 4 Basic safety warnings
 7 Services

9 System description
 10 System overview
 13 System dimensions
 18 Instructions for assembly and use
 21 Adaptation to building layout
 29 Height adjustment
 30 Drop beams
 31 Slab bulkheads
 33 Fall protection on the formwork

34 Structural design

38 Repositioning
 38 General instructions on repositioning
 39 Horizontal traveling
 42 Vertical repositioning by crane
 43 Repositioning operation
 47 Lining and leveling DokaTruss tables

49 Assembly

55 General remarks
 55 Combining with other Doka systems
 56 Transporting, stacking and storing
 63 Fall protection on the structure
 64 Reshoring props, concrete technology and stripping

68 Product overview
Introduction

Basic safety warnings

User target groups

- This booklet is aimed at all persons who will be working with the Doka product or system that it describes. It contains information on the standard design for setting up this system, and on correct, compliant utilization of the system.
- All persons working with the product described herein must be familiar with the contents of this booklet and with all the safety instructions it contains.
- Persons who are incapable of reading and understanding this booklet, or who can do so only with difficulty, must be instructed and trained by the customer.
- The customer is to insure that the information materials provided by Doka (e.g. User Information booklets, Method Statements, Operating Instruction manuals, plans etc.) are up to date and available to all users, and that users have been made aware of them and have easy access to them at the usage location.
- In the relevant technical documentation and formwork utilization plans, Doka shows the workplace safety precautions that are necessary in order to use the Doka products safely in the usage situations shown.

In all cases, users must ensure compliance with the national applicable laws, standards and rules throughout the entire project and to take appropriate additional or alternative workplace safety precautions where necessary.

Hazard assessment

- The customer is responsible for drawing up, documenting, implementing and continually updating a hazard assessment at every job-site. This booklet serves as the basis for the site-specific hazard assessment, and for the instructions given to users on how to prepare and utilize the system. It does not substitute for these, however.

Remarks on this booklet

- This document can be used as general Instructions for Assembly and Use (Method Statement) or be incorporated into site-specific Instructions for Assembly and Use (Method Statement).
- The graphics, animations and videos in this document or app sometimes depict partially assembled assemblies and may require additional safety equipment and/or measures to comply with safety regulations.
 The customer must ensure all applicable regulations are complied with, even if they are not shown or implied in the graphics, animations and videos provided.
- Individual sections contain further safety instructions and/or special warnings as applicable.

Planning

- Provide safe workplaces for those using the formwork (e.g. for when it is being erected/dismantled, modified or repositioned etc). It must be possible to get to and from these workplaces via safe access routes!
- If you are considering any deviation from the details and instructions given in this booklet, or any application which goes beyond those described in the booklet, then revised static calculations must be produced for checking, as well as supplementary assembly instructions.

Regulations; occupational health & safety

- All laws, Standards, industrial safety regulations and other safety rules applying to the application and utilization of our products in the country and/or region in which you are operating must be observed at all times.
- If a person or object falls against, or into, the sideguard component and/or any of its accessories, the component affected may only continue in use after it has been inspected and passed by an expert.
Rules applying during all phases of the assignment:

- The customer shall ensure that this product is erected and dismantled, repositioned and generally used for its intended purpose in accordance with the applicable laws, standards and rules, under the direction and supervision of suitably skilled persons. These persons' mental and physical capacity shall not in any way be impaired by alcohol, medicines or drugs.
- Doka products are technical working appliances which are intended for industrial / commercial use only, always in accordance with the respective Doka User Information booklets or other technical documentation authored by Doka.
- The stability and load-bearing capacity of all components and units must be ensured during all phases of the construction work!
- Do not step on or apply strain to cantilevers, closures, etc. until suitable measures to ensure their stability have been correctly implemented (e.g. by tie-backs).
- The functional / technical instructions, safety warnings and loading data shall all be strictly observed and complied with. Non-compliance can cause accidents and severe injury (risk of fatality) and serious damage to property.
- Sources of fire in the vicinity of the formwork are prohibited. Heaters are permissible only when used correctly and situated a correspondingly safe distance from the formwork.
- Customer must give due consideration to any and all effects of the weather on the equipment and regards both its use and storage (e.g. slippery surfaces, risk of slipping, effects of the wind, etc.) and implement appropriate precautionary measures to secure the equipment and surrounding areas and to protect workers.
- All connections must be checked at regular intervals to ensure that they are secure and in full working order.
 In particular threaded connections and wedged connections have to be checked and retightened as necessary in accordance with activity on the jobsite and especially after out-of-the-ordinary occurrences (e.g. after a storm).
- It is strictly prohibited to weld or heat Doka products, particularly parts for anchoring, suspension or connecting, and also cast parts, etc. Welding radically changes the micro-structure of the materials of which these components are made. This leads to a drastic reduction in failure load, constituting a serious safety risk.
- It is permissible to cut individual tie rods to length with metal cutting discs (introduction of heat at the end of the rod only), but it is important to ensure that flying sparks do not heat and thus damage other tie rods. Welding work can be done only on the articles expressly mentioned in the Doka documents as being suitable for work of this nature.

Assembly

- The equipment/system must be inspected by the customer before use, to ensure that it is in suitable condition. Steps must be taken to rule out the use of components that are damaged, deformed, or weakened due to wear, corrosion or rot (e.g. fungal decay).
- The use of our safety systems and formwork systems in combination with those of other manufacturers could be dangerous, risking injury to health and damage to property, and therefore requires separate checking.
- The equipment/system must be assembled and erected in accordance with the applicable laws, standards and rules by suitably skilled personnel of the customer's, having regard to any and all required safety inspections.
- It is not permitted to modify Doka products; any such modifications constitute a safety risk.

Erecting the formwork

- Doka products and systems must be set up in such a way that all loads acting upon them are safely transferred!

Pouring

- Do not exceed the permitted fresh-concrete pressures. Excessively high pouring rates lead to formwork overload, cause greater deflection and risk causing breakage.

Stripping the formwork

- Do not strip the formwork until the concrete has reached sufficient strength and the person in charge has given the order for the formwork to be stripped!
- When stripping the formwork, never use the crane to break concrete cohesion. Use suitable tools such as timber wedges, special pry-bars or system features such as Framax S bias-cut corners.
- When stripping the formwork, do not endanger the stability of any part of the structure, or of any scaffolding, platforms or formwork that is still in place!
Transporting, stacking and storing

- Observe all country-specific regulations applying to the handling of formwork and scaffolding. For system formwork the Doka slinging means stated in this booklet must be used – this is a mandatory requirement.

 If the type of sling is not specified in this booklet, the customer must use slinging means that are suitable for the application envisaged and that comply with the regulations.

- When lifting, always make sure that the unit to be lifted and its individual parts can absorb the forces that occur.

- Remove loose parts or secure them so that they cannot slip out of position and drop.

- All components must be stored safely, following all the special Doka instructions given in the relevant sections of this document!

Maintenance

- Only original Doka components may be used as spare parts. Repairs may only be carried out by the manufacturer or authorized facilities.

Miscellaneous

The weights are averages on the basis of new material. Actual weights can vary due to material tolerances. Weights can also differ on account of dirtying, moisture absorption, etc.

We reserve the right to make alterations in the interests of technical progress.

Symbols

The following symbols are used in this document:

- **DANGER**
 - This is a notifier drawing attention to an extremely dangerous situation in which non-compliance with this notifier will lead to death or severe, irreversible injury.

- **WARNING**
 - This is a notifier drawing attention to a dangerous situation in which non-compliance with this notifier can lead to death or severe, irreversible injury.

- **CAUTION**
 - This is a notifier drawing attention to a dangerous situation in which non-compliance with this notifier can lead to slight, reversible injury.

- **NOTE**
 - This is a notifier drawing attention to a situation in which non-compliance with this notifier can lead to malfunctions or damage to property.

- **Instruction**
 - Indicates that actions have to be performed by the user.

- **Visual inspection**
 - Indicates that actions performed must be checked by means of a visual inspection.

- **Tip**
 - Draws attention to a useful tip for best-practice usage.

- **Reference**
 - Cross-references other documents.
Services

Support in every phase of the project

- Project success assured by products and services from a single source.
- Competent support from planning through to assembly right on site.

Project assistance from start to finish

Every project is unique and calls for individualized solutions. When it comes to the forming operations, the Doka team can help you with its consulting, planning and ancillary services in the field, enabling you to carry out your project effectively, safely and reliably. Doka assists you with individual consulting services and customized training courses.

Efficient planning for a safe project sequence

Efficient formwork solutions can be developed economically only if there is an understanding of project requirements and construction processes. This understanding is the basis of Doka engineering services.

Optimize construction workflows with Doka

Doka offers special tools that help you design transparent processes. This is the way to speed up pouring processes, optimize inventories and create more efficient formwork planning processes.

Custom formwork and on-site assembly

Doka complements its system formwork with customized formwork units. Specially trained personnel assemble load-bearing towers and formwork on site.

Just-in-time availability

Formwork availability is vital for on-time, on-budget realization of your project. The worldwide logistics network puts the necessary formwork quantities on site at the agreed time.

Rental and reconditioning service

The formwork material needed for any particular project can be rented from Doka’s high-performing rental park. Doka Reconditioning cleans and overhauls client-owned equipment and Doka rental equipment.

High performance, in all stages of the project

<table>
<thead>
<tr>
<th>Tender</th>
<th>Operations scheduling</th>
<th>Construction work</th>
<th>Project close-out</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Execution planning
- Cycle planning
- Structure modeling/3D planning
- Assembly drawings
- Statics calculation
- Concremote

Consulting and training

- Project processing on-site
- Formwork instructor
- Training & consulting

Process optimization

- Concremote
- myDoka
- Planning software
- Yard management

Pre-assembly and assembly

- Pre-assembly service
- Formwork pre-assembly on site

Logistics

- Organization of transport & freight

Rental and reconditioning service

- Rental service
- Formwork returns
- Reconditioning & service fixed rates

upbeat construction
digital services for higher productivity

From planning through to completion - with upbeat construction we’ll be moving construction forward and upping the beat for more productive building with all our digital services. Our digital portfolio covers the entire construction process and is being extended all the time. To find out more about our specially developed solutions go to doka.com/upbeatconstruction.
System description

DokaTruss table – The optimized tableform for building construction at a record pace

The DokaTruss table speeds up cycles in building construction. The tableforms, with large table tops exactly tailored to the layout, save crane cycles and enhance safety. The modular design offers many ways in which the floor-slab system can be adapted to different slab heights and thicknesses – you will only need material that is actually used on the jobsite.

Short construction times and substantial labor savings

Speed up your forming times
- Maximum safety, speed and cost efficiency.
- Tables sized up to 2,150 ft² (200 m²) are repositioned safely and swiftly in a single crane cycle.
- Table lengths up to 100'-0" (30.5 m) and widths up to 21'-0" (6.40 m) with only two truss sections.
- Labor savings – fewer work steps with legs spaced up to 12'-0" (3.65 m) apart.

Superior adaptability

The perfect fit for your project
- Lightweight, yet strong – optimally designed from a combination of steel and aluminum.
- The steel/aluminum combination offers low weight while ensuring high capacities.
- Modular and flexible – length and width can be configured to meet any jobsite requirement.
- Versatile – formwork for drop beams and for column filler areas is integrated into the DokaTruss table.
- Easily adaptable to fit any building layout and room height using standard Doka parts.
System overview

Segment TT 12'-0" 2G

- A C6 Alu Channel top TT 12'-0"
- B C6 Alu Channel bottom TT 12'-0"
- C C6 Alu Channel top TT 24'-0"
- D C6 Alu Channel bottom TT 24'-0"
- E Spacer C6 TT
- F Standard TT 2G
- G Strut TT 2G
- H Diagonal brace TT 6'-0"
- I Multi-purpose waling WS10 Top50
- J Handrail post T 1.80m

Segment TT 24'-0" 2G

- K End protector C6 TT
- L Splice plate C6 TT
- M Splice plate C6/WS10 TT
- N Adjustment leg TT or Adjustment leg TT 2G
- O Screw jack foot TT
- P Screw jack anti-dropout lock TT
- Q Fastening bolt TT
- R Diagonal cross
- S Diagonal cross adapter TT
- T Lifting adapter TT + Shackle Xclimb 60 6.5t

Extension
Truss section

Segment TT

Segment TT 12'-0" 2G or Segment TT 24'-0" 2G
Consisting of:

C6 Alu Channels top TT (top chord)
- Diagonal cross adapters TT with safety catches, for fitting the horizontal diagonal crosses.
- **Bolting** with Standard TT and Strut TT:
 - Hexagon bolt DIN 931 M20x90
 - Hexagon bolt DIN 934 M20
 - Washer ISO 7089 20

Standard TT 2G
- Provided with holes for pinning the feet in place in different height positions.
- Safety catches for fitting the vertical diagonal crosses.
- Lugs with holes for bolting Struts TT.
- **Bolting** with Strut TT:
 - Hexagon bolt DIN 931 M20x90
 - Hexagon nut DIN 934 M20
 - Washer ISO 7089 20

Strut TT 2G
- Bolted to the lugs of the Strut TT at the bottom and to the top chord at the top.

Spacer C6 TT
- Is installed in the bottom chord between the C6 Alu channels.

C6 Alu Channels bottom TT (bottom chord)
- End protector C6 TT for protecting the channel positioned at the end of a truss section.
- **Bolting** with Spacer C6 TT:
 - Hexagon bolt DIN 931 M20x120
 - Hexagon nut DIN 934 M20
 - Washer ISO 7089 20

The segments are joined together using the Splice plate C6 TT.

Extension

Consisting of Multi-purpose waling WS10 Top50 and Diagonal brace TT 6'-0".
- The multi-purpose waling is joined to the Segment TT using the Splice plate C6/WS10 TT.

Fall protection

The **Handrail post T 1.80m** is bolted onto the multi-purpose waling of the extension, as a fall protection at the slab edge.

Foot

Room heights up to 13'-1 1/2" (4.00 m)
Consisting of:

Adjustment leg TT or Adjustment leg TT 2G

Distinction:

<table>
<thead>
<tr>
<th>Adjustment leg TT</th>
<th>Adjustment leg TT 2G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **25 % higher load-bearing capacity** (see the section headed ‘Structural design’)
- **different baseplate (X)**
- **’2G’ sticker (Y)**

NOTICE
When Adjustment leg TT and Adjustment leg TT 2G are both used, the lower load-bearing capacity of the Adjustment leg TT applies!

Screw jack foot TT
- Screw jack anti-dropout lock TT for securing the screw jack foot in the adjustment leg (2 locks per adjustment leg).

The feet are pinned in place in the vertical legs (as statically required and according to the room height needed) with **Fastening bolts TT**.
- Foot adjusted to the required height (Pos. 1).
- Foot pinned in place. Fastening bolt secured with a linch pin to prevent it dropping out (Pos. 2).
Installation situations of the foot in the vertical leg:

<table>
<thead>
<tr>
<th>As propping</th>
<th>during repositioning, transporting and storage</th>
</tr>
</thead>
</table>

Room heights over 13'-1 1/2" (4.00 m)

Note:
For room heights over 13'-1 1/2" (4.00 m), instead of the feet Doka Super Props are mounted on the segment by means of Table heads Super Prop TT. Consult your Doka technician for details.

Diagonal crosses

Slide-in bracing crosses made of tubular steel, for mounting between the truss sections.

Identified by:
- Embossed markings, e.g. 18.250
- Notched, color-coded clips (see the section headed "System dimensions")

Basic rule:
Vertical diagonal crosses are mounted to each vertical leg with a foot pinned to it.

Crane hoisting points

Consisting of Lifting adapter TT und Shackle Xclimb 60 6.5t
- are mounted to the top chord (Segment TT).

Joists

Follow the directions in the User Information booklet of the beams being used!

Plywood

Follow the directions in the User Information booklet of the formwork sheets being used!
System dimensions

Truss section

Segment TT 12'-0" 2G Segment TT 24'-0" 2G Extension

a ... 11'-11 1/2" (364.5 cm)
b ... 23'-11 1/2" (730.0 cm)
c ... 3'-0" (100.0) to 8'-0" (245.0 cm)
d ... 5'-4" (162.5 cm)
d1 ... 6'-8" (203.0 cm)
e ... 6'-0" (183.0 cm)
f ... 10'-8" (325.0 cm)
f1 ... 12'-0" (365.5 cm)
g ... 11'-4" (345.5 cm)
h ... 5'-4 1/2" (164.5 cm)
i ... 6'-8 1/2" (205.0 cm) to 12'-4 1/2" (377.0 cm)*

*) see the section headed "Height adjustment".

Distance between truss sections

<table>
<thead>
<tr>
<th>Designation</th>
<th>Marked with color-coded clip</th>
<th>Center-to-center distance j between truss sections (A) [inch]</th>
<th>[cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal cross 9.150</td>
<td>red</td>
<td>---</td>
<td>129.5</td>
</tr>
<tr>
<td>Diagonal cross 9.175</td>
<td>light green</td>
<td>---</td>
<td>157.8</td>
</tr>
<tr>
<td>Diagonal cross 9.200</td>
<td>blue</td>
<td>---</td>
<td>185.2</td>
</tr>
<tr>
<td>Diagonal cross 9.250</td>
<td>yellow</td>
<td>---</td>
<td>238.3</td>
</tr>
<tr>
<td>Diagonal cross 9.300</td>
<td>orange</td>
<td>---</td>
<td>290.3</td>
</tr>
<tr>
<td>Diagonal cross 12.100</td>
<td>green</td>
<td>1</td>
<td>100.0</td>
</tr>
<tr>
<td>Diagonal cross 12.150</td>
<td>red</td>
<td>1</td>
<td>150.0</td>
</tr>
<tr>
<td>Diagonal cross 12.175</td>
<td>light green</td>
<td>1</td>
<td>175.0</td>
</tr>
<tr>
<td>Diagonal cross 12.200</td>
<td>blue</td>
<td>1</td>
<td>200.0</td>
</tr>
<tr>
<td>Diagonal cross 12.250</td>
<td>yellow</td>
<td>1</td>
<td>250.0</td>
</tr>
<tr>
<td>Diagonal cross 12.300</td>
<td>orange</td>
<td>1</td>
<td>300.0</td>
</tr>
<tr>
<td>Diagonal cross 18.100</td>
<td>green</td>
<td>3</td>
<td>166.0</td>
</tr>
<tr>
<td>Diagonal cross 18.150</td>
<td>red</td>
<td>3</td>
<td>200.2</td>
</tr>
<tr>
<td>Diagonal cross 18.175</td>
<td>light green</td>
<td>3</td>
<td>219.5</td>
</tr>
<tr>
<td>Diagonal cross 18.200</td>
<td>blue</td>
<td>3</td>
<td>240.0</td>
</tr>
<tr>
<td>Diagonal cross 18.250</td>
<td>yellow</td>
<td>3</td>
<td>283.0</td>
</tr>
<tr>
<td>Diagonal cross 18.300</td>
<td>orange</td>
<td>3</td>
<td>328.0</td>
</tr>
</tbody>
</table>
| Diagonal cross TT 12'-0" light blue | 3 | 12'-0" (365.8)
System description

User Information

DokaTruss table

Weight of table with 2 truss sections, as a function of the spacing between the joists (guide values)

<table>
<thead>
<tr>
<th>Length of table (l)</th>
<th>Width of table (joists)</th>
<th>Spacing of joists</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24" (60 cm)</td>
<td>19 3/4" (50 cm)</td>
</tr>
<tr>
<td></td>
<td>[lb]</td>
<td>[kg]</td>
</tr>
<tr>
<td>Segment TT 12'-0" 2G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l = 12'-0" (3.65 m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doka beam H20 2.45m</td>
<td>832</td>
<td>377.3</td>
</tr>
<tr>
<td>Doka beam H20 3.60m</td>
<td>928</td>
<td>420.8</td>
</tr>
<tr>
<td>Doka beam H20 4.90m</td>
<td>1044</td>
<td>473.4</td>
</tr>
<tr>
<td>Doka beam H20 5.90m</td>
<td>1139</td>
<td>516.5</td>
</tr>
<tr>
<td>Segment TT 24'-0" 2G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l = 24'-0" (7.30 m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doka beam H20 2.45m</td>
<td>1435</td>
<td>651.1</td>
</tr>
<tr>
<td>Doka beam H20 3.60m</td>
<td>1612</td>
<td>731.4</td>
</tr>
<tr>
<td>Doka beam H20 4.90m</td>
<td>1825</td>
<td>828.0</td>
</tr>
<tr>
<td>Doka beam H20 5.90m</td>
<td>1998</td>
<td>906.5</td>
</tr>
<tr>
<td>Extension 8'-0"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l = 8'-0" (2.45 m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doka beam H20 2.45m</td>
<td>415</td>
<td>188.2</td>
</tr>
<tr>
<td>Doka beam H20 3.60m</td>
<td>465</td>
<td>210.9</td>
</tr>
<tr>
<td>Doka beam H20 4.90m</td>
<td>523</td>
<td>237.2</td>
</tr>
<tr>
<td>Doka beam H20 5.90m</td>
<td>567</td>
<td>257.1</td>
</tr>
</tbody>
</table>

The weights stated in this table include the weights of the following components:

- **2 truss sections**
 - (Segments TT / extension)

- **Joists**
 - (Doka beams H20 incl. connectors)

- **Diagonal crosses**

Note:

For determining a table’s actual total weight, the weight of the splice plates, feet, mounted parts, and the plywood used must be taken into account.

- **Splice plates C6 TT** (incl. screw set) to join 2 truss sections with 2 further truss sections (= 8 pcs.):
 - 182.8 lbs (82.9 kg)

- **Foot (adjustment leg, screw jack foot, fastening bolt)**
 - With Screw jack foot TT 3’-2": 48.2 lbs (21.9 kg)
 - With Screw jack foot TT 4’-2": 52.6 lbs (23.9 kg)

- **Plywood** 3/4" (19 mm):
 - 2.5 psf (12.2 kg/m²)
Table sizes

Table with 2 truss sections

Plan view:

- Length of table:
 - 18'-0" (5.50 m) to 100'-0" (30.50 m)
- Width of table:
 - 5'-11" (1.80 m) to 21'-0" (6.40 m)

Table with 3 truss sections

Plan view:

- Length of table:
 - 18'-0" (5.50 m) to 49'-2 1/2" (15.00 m)
- Width of table:
 - 19'-8" (6.00 m) to 34'-5" (10.50 m)
Possible combinations

28'-0" (8.50 m)

40'-0" (12.20 m)

52'-0" (15.85 m)

64'-0" (19.50 m)

76'-0" (23.15 m)

88'-0" (26.80 m)

100'-0" (30.50 m)

I ... max. 100'-0" (30.50 m)
The positions of the crane hoisting points shown here may vary in practice. Attention must be paid to the relevant assembly plan / shop drawing!

A Segment TT 12'-0" 2G
B Segment TT 24'-0" 2G
C Extension 8'-0"
X Front crane hoisting point
Y Rear crane hoisting point
DokaTruss table System description

Length of table
<table>
<thead>
<tr>
<th>Length of table</th>
<th>Number of components per truss section</th>
</tr>
</thead>
<tbody>
<tr>
<td>28'-0" (8.50 m)</td>
<td>1 (A) - Segment TT 12'-0" 2G</td>
</tr>
<tr>
<td>40'-0" (12.20 m)</td>
<td>1 (B) - Segment TT 24'-0" 2G</td>
</tr>
<tr>
<td>52'-0" (15.85 m)</td>
<td>1 (C) - Extension 8'-0"</td>
</tr>
<tr>
<td>64'-0" (19.50 m)</td>
<td>2</td>
</tr>
<tr>
<td>76'-0" (23.15 m)</td>
<td>2</td>
</tr>
<tr>
<td>88'-0" (26.80 m)</td>
<td>3</td>
</tr>
<tr>
<td>100'-0" (30.50 m)</td>
<td>3</td>
</tr>
</tbody>
</table>

Note:
In addition to the combinations shown here, it is also possible to adapt the length of table to meet project-specific requirements (e.g. by using extensions of different lengths).
Instructions for assembly and use

Depending on the project, the actual design and sequence of operations may differ from the descriptions given in this booklet.

- Follow the shop drawing / assembly plan or ask your Doka technician.

⚠️ CAUTION
➤ DokaTruss tables may only be used to form horizontal slabs.
➤ It is forbidden to use them in inclined situations.
➤ Never place tables on top of one another.

⚠️ CAUTION
Risk of small-sized tables tipping over!
➤ If necessary, secure them with a back-stay!

Note:
All necessary traffic routes must be prepared at the site!

Erecting the formwork

➤ Move the table to its usage location by crane, raise it to the intended operational height, extend the feet, and adjust the table's height (see the section headed "Height adjustment").
If necessary, secure the table to the building.

➤ Tilt up the hinge panels by crane and place floor props beneath them (see the section headed "Hinge panel").

➤ Put up all the other tables and secure them if necessary.

NOTICE
➤ Use personal fall-arrest systems to protect against falls (e.g. Doka personal fall-arrest set).
➤ Mount additional fall protection (see the section headed "Fall protection on the formwork").

➤ If necessary, put up props in the filler zones or insert insertion beams (see the section headed "Fillers with plywood strips").

➤ Insert plywood strips between the tables, and nail where needed (see the section headed "Fillers with plywood strips").

➤ Form the slab bulkheads (see the section headed "Slab bulkheads").

➤ Spray the form-facing with release agent.

➤ Place the reinforcement.

Pouring

To protect the surface of the form-facing, we recommend using a vibrator with a protective rubber cap.

Stripping and repositioning the formwork

➤ Check the concrete strength.

➤ Take the load off the tables and lower them approx. 2” (5 cm) with the screw jack foot.

➤ Remove the fillers.

NOTICE

As well as the instructions given here, the section headed "Reshoring props, concrete technology and stripping" must be followed.

The T ledge makes it easier to strip the formwork. It is only needed in the area where stripping begins.

➤ a ... max. 1/2” (15 mm)

Form the slab bulkheads (see the section headed "Slab bulkheads").
Tilting down the hinge panel

1) Attach the lifting chain/cable to the lifting bracket of the hinge panel and remove the floor prop.
2) Tilt down the hinge panel with the assistance of a crane and dismount the plumbing strut.

➤ Lift the table to its next usage location (see the section headed ‘Repositioning’).

Reshoring

➤ Use personal fall-arrest systems to protect against falls (e.g. Doka personal fall-arrest set).

NOTICE

1) Attach the lifting chain/cable to the lifting bracket of the hinge panel and remove the floor prop.
2) Tilt down the hinge panel with the assistance of a crane and dismount the plumbing strut.

➤ Lift the table to its next usage location (see the section headed 'Repositioning').

Reshoring

NOTICE

It is essential to follow the instructions given here and the instructions in the section headed 'Reshoring props, concrete technology and stripping'.

➤ Before pouring the next floor-slab (i.e. above the one that has just been stripped), install reshoring props.
Adaptation to building layout

The tableforms can be adapted to the building layout in the following ways:

- Table sizes and shapes adapted to the project
- Filler zones with plywood strips
- Fillers using hinge panels

Fillers with plywood strips

NOTICE

The width 'c' of the plywood strip, the permitted slab thickness, and the required type of propping must be statically determined on a project-specific basis!

Support on the DokaTruss table

with no additional propping

center-propped
double-propped

with insertion beam

with no additional propping

center-propped

Location of the Insertion beams

➤ Place the insertion beams (A) at the ends of the tables, as close as possible to the edge.
➤ Do not space the insertion beams any further apart than the beams of the table.
➤ Insert an extra insertion beam (B) under the joint between the formwork sheets (C).

NOTICE

The joint where the sheets abut (D) must always be positioned over the raised support surface of the insertion beam (A).

Example: Incorporating columns into the filler zone:

For very thick slabs, the insertion beam can be fitted with its raised support surface facing downwards, and wedged up to the right height on the table waling. This permits bigger filler widths.

Please consult your Doka technician.
at wall or column junctions

Propping the filler zones

This additional propping is set up using Beams H20, Supporting heads H20 DF and Floor props Eurex top.

Wall junctions on both sides

A filler is only needed on one side facing the wall.

Combining tables in the longitudinal and transverse directions

A filler is only needed on one side facing the wall.

Fourth

Supporting head H20 DF
Doka beam H20
Hole in the supporting head
(for fixing to the beam)

➤ Place the Supporting head H20 DF on the inside tube of the floor prop and secure it with the integral spring-steel stirrup.
Adaptation in the longitudinal direction

Tables can be adapted to the building layout in the longitudinal direction by extending the truss sections with the Multi-purpose walings WS10 Top50 3'-0" (100 cm) to 8'-0" (245 cm).

Note:
For extensions longer than 8'-0" (245 cm), ask your Doka technician!

Nuts & bolts, etc. needed for each extension:
- 5 hexagon bolts M20x100
- 5 hexagon nuts M20
- 5 washers 20

Extensions at the slab edge

The table is extended outwards, resulting in an area 'b' free to work on beyond the slab bulkhead (no full-face concrete load).

Extensions within the structure

Extensions within the structure of up to 5'-0" (150 cm) (see the section headed 'Extensions at the slab edge'). Extensions within the structure of more than 5'-0" (150 cm) must be additionally supported.

Note:
Separate statical verification must be performed for extensions within the structure.

- **Version 1: Propping with a floor prop**

 ![Diagram of Version 1](image)

 c ... 5'-0" (150 cm) to 8'-0" (245 cm)

 - A Multi-purpose waling WS10 Top50
 - B Diagonal brace TT 6'-0"
 - C Segment TT
 - D Splice plate C6/WS10 TT
 - E Floor prop Eurex top
 - F Dokamatic strut connection

- **Version 2: Spindle strut T7 instead of the diagonal brace**

 ![Diagram of Version 2](image)

 c ... 5'-0" (150 cm) to 8'-0" (245 cm)

 - A Multi-purpose waling WS10 Top50
 - C Segment TT
 - D Splice plate C6/WS10 TT
 - G Spindle strut T7
Hinge panel

The hinge panel is mounted to the side of the Doka-Truss table.
- It is used for adaptation between columns or in wall niches (Pos. 1).
- For stripping and repositioning the tableform, the panel is tilted down (Pos. 2).

Function of the hinge panel (simplified drawing):

Tableform closed:

While being repositioned:

Assembly

a ... max. 11'-9 ⅙" (3.60 m)
b ... max. 5'-0" (1.50 m)
c ... min. 4" (10 cm)
d ... adapted to the spacing between the joists of the table

K Hinge panel
L DokaTruss table

Tools needed:
- Reversible ratchet 1/2"
- Box nut 24
- Fork wrench 24

Pre-assembling the hinge panel:

- Join the stringers and joists (e.g. with wood screws and Brace stirrup 8).
- Bolt the Tilting connector TT and the shims to the joist.
 Holes to be drilled: diam. ⅛" (18 mm).

A Stringer
B Joist
C Brace stirrup 8 + Safety plate for brace stirrup 8
D Tilting connector TT
E Strut shoe EB (for connecting the plumbing strut)
F Lifting bracket
G Shim 1 ⅛" x ⅜" (29 x 120 mm) (W x H)
H Squared timber approx. 2x2 (5 x 5 cm) (W x H)
I Plywood
J Supporting head H20 DF (for connecting the floor prop)

D Tilting connector TT
G Shim 1 ⅛" x ⅜" (29 x 120 mm) (W x H)
Bolt the lifting bracket to the same joist as the tilting connector. Holes to be drilled: diam. 3/4" (18 mm).

Mounting to the table:
Fasten a shim to either side of the joist of the table, and drill a hole. Hole to be drilled: diam. 1 1/4" (31 mm).

Bolt the Strut shoe EB and the shims to the outside stringer. Hole to be drilled: diam. 3/4" (18 mm).

Nuts & bolts, etc. needed for each Strut shoe EB:
- 1 hexagon bolt M16x120
- 1 hexagon nut M16
- 1 washer M16 (ISO 7094)

Mount a squared timber to the underside of the joists, using two wood screws for each joist, to strengthen the stringers.

Lay the formwork sheets and screw them on.

Lifting bracket
Strut shoe EB
Shim 1 1/8" x 4 1/2" (29 x 120 mm) (W x H)
Squared timber approx. 2x2 (5 x 5 cm) (W x H)
Formwork sheets
DokaTruss table
Hinge panel
Drilled hole diam. 1 1/4" (31 mm)
Use at the slab edge

The sequence shown here is based on a hinge panel at the slab edge. For hinge panels within the structure, Floor props Eurex top are used instead of the plumbing struts.

NOTICE

- Use personal fall-arrest systems to protect against falls (e.g. Doka personal fall-arrest set).
- Pin the plumbing strut into the Strut shoe EB, which is mounted to the hinge panel.
- Tilt up the hinge panel by crane.

➤ Fix the plumbing strut to the ground with a Doka express anchor.

Follow the directions in the ‘Doka express anchor 16x125mm’ Fitting Instructions!

➤ Put up the floor prop with supporting head.

Tableform closed:

Table while being repositioned:

- g ... min. 2'-0" (60.0 cm)
- h ... max. 5'-8" (1.73 m)
- i ... approx. 1'-6" (45.0 cm)
A table with 3 truss sections and a width of up to 34'-5" (10.50 m) can be repositioned in a single crane cycle. To do this, spreader beams with crane hoisting points are mounted at right angles to the truss sections.

Drawing not showing the superstructure

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a ...</td>
<td>2'-1 1/2" (650 mm)</td>
</tr>
<tr>
<td>b ...</td>
<td>max. 10" (255 mm)</td>
</tr>
</tbody>
</table>

- **A** Truss section
- **B** Spreader beam (e.g. two C8 profiles or U200 S235 profiles; see shop drawing / assembly plan)
- **C** Tie rod 15.0 mm
- **D** Super plate 15.0
- **E** Hexagon nut 15.0 (width-across 30 mm)
- **F** Lifting adapter TT
- **G** Shackle Xclimb 60 6.5t

Each shackle is supplied with:
- 1 threaded bolt M24x115
- 1 hexagon nut M24
- 1 cotter pin

Follow the directions in the "Shackle Xclimb 60 6.5t" Operating Instructions!

Nuts & bolts, etc. needed for each lifting adapter:
- 1 hexagon bolt M20x100
- 1 hexagon nut M20
- 1 washer 20

Note:
Separate statical verification must be performed for tables with 3 truss sections weighing more than 15430 lbs (7000 kg).
Height adjustment

Room heights up to 13'-1 1/2" (4.00 m)

- Rough adjustment in 6" (15 cm) increments is carried out by pinning the feet to the segment in one of 5 possible positions.
- Fine adjustment is made with the screw jack feet.

Positions for fixing the feet to the Segment TT

<table>
<thead>
<tr>
<th>Room height (h)</th>
<th>Fixing position</th>
</tr>
</thead>
<tbody>
<tr>
<td>7'-5" (227 cm)</td>
<td>h_min: 10'-1 1/2" (310 cm)</td>
</tr>
<tr>
<td>7'-11" (242 cm)</td>
<td>h_min: 10'-7 1/2" (325 cm)</td>
</tr>
<tr>
<td>8'-5" (257 cm)</td>
<td>h_min: 11'-1 1/2" (340 cm)</td>
</tr>
<tr>
<td>8'-11" (272 cm)</td>
<td>h_min: 11'-7 1/2" (355 cm)</td>
</tr>
<tr>
<td>9'-5" (287 cm)</td>
<td>h_min: 12'-1 1/2" (370 cm)</td>
</tr>
</tbody>
</table>

With Screw jack foot TT 3'-2"

<table>
<thead>
<tr>
<th>Room height (h)</th>
<th>Fixing position</th>
</tr>
</thead>
<tbody>
<tr>
<td>7'-11" (242 cm)</td>
<td>h_max: 11'-1 1/2" (340 cm)</td>
</tr>
<tr>
<td>8'-5" (257 cm)</td>
<td>h_max: 12'-1 1/2" (370 cm)</td>
</tr>
<tr>
<td>8'-11" (272 cm)</td>
<td>h_max: 12'-7 1/2" (385 cm)</td>
</tr>
<tr>
<td>9'-5" (287 cm)</td>
<td>h_max: 13'-1 1/2" (400 cm)</td>
</tr>
</tbody>
</table>

With Screw jack foot TT 4'-2"

<table>
<thead>
<tr>
<th>Room height (h)</th>
<th>Fixing position</th>
</tr>
</thead>
<tbody>
<tr>
<td>7'-11" (242 cm)</td>
<td>h_max: 11'-1 1/2" (340 cm)</td>
</tr>
<tr>
<td>8'-5" (257 cm)</td>
<td>h_max: 12'-1 1/2" (370 cm)</td>
</tr>
<tr>
<td>8'-11" (272 cm)</td>
<td>h_max: 12'-7 1/2" (385 cm)</td>
</tr>
<tr>
<td>9'-5" (287 cm)</td>
<td>h_max: 13'-1 1/2" (400 cm)</td>
</tr>
</tbody>
</table>

*) Stripping allowance: 0'-2" (5 cm) (already allowed for in the table)

Note:
For room heights over 13'-1 1/2" (4.00 m), instead of the feet Doka Super Props are mounted on the segment by means of Table heads Super Prop TT. Consult your Doka technician for details.

NOTICE
Reduction in the permitted leg loads must be taken into account, depending on the room height (see the section headed "Structural design")!
Drop beams

at the slab edge

with Drop beam connector TT and Drop beam walling TT

- For drop beam heights between 8” (20 cm) and 2'-5 1/2” (75 cm), in 2” (5 cm) increments.
 For heights of drop beams outside the 2” (5 cm) grid: see project plan.
- For bulkhead heights of up to 2'-11 1/2” (90 cm).

Note:
For drop beams, separate statical verification must be performed.

Note:
Drop beams with a width ‘b’ greater than 1'-0” (30 cm) require additional propping with Floor props Eurex top.

in mid-slab

Note:
For forming drop beams in mid-slab, ask your Doka technician!
Slab bulkheads

with Framax universal corner waling

Use a 3/4" (20 mm) diameter bit to drill the holes through the plywood. Unneeded holes in the plywood should be closed off on the site with Universal plugs R20/25.

with Universal end-shutter support 30cm

Fastened with nails (configuration A)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Fastened with</th>
<th>8" (20 cm)</th>
<th>10" (25 cm)</th>
<th>1'-0" (30 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4 nails 10d (3.1x80)</td>
<td>2' 11 1/2" (90 cm)</td>
<td>1'-8" (50 cm)</td>
<td>1'-0" (30 cm)</td>
</tr>
<tr>
<td>B</td>
<td>4 Spax screws 3/16" x 1 3/4" (4x40) (fully threaded)</td>
<td>7'-2 1/2" (220 cm)</td>
<td>6'-3" (190 cm)</td>
<td>5'-3" (160 cm)</td>
</tr>
</tbody>
</table>

d ... Slab thickness max. 1'-0" (30 cm)
Stripping tip:

➤ Take out the nails on the bulkhead side
➤ Put the claw of a hammer under the corner (put a piece of wood under it to protect the plywood sheeting)
➤ Lever up the end-shutter support

Fastened with Spax screws (configuration B)

A Universal end-shutter support 30cm
C Formwork sheet
D Spax screw 3/16” x 1 3/4” (4x40)
E Doka beam H20

d ... Slab thickness max. 1'-0” (30 cm)
Fall protection on the formwork

NOTICE

- Ideally, fall protection should be mounted from below.
- When mounting/dismounting edge protection from above, the crew must use a personal fall-arrest system to protect against falls (e.g. the Doka personal fall-arrest set).
- Suitable anchorage points must be defined by a skilled person appointed by the contractor.

Follow the directions in the 'Edge protection system XP' User Information booklet.

Handrail clamp S

Assembly:

- Wedge the handrail clamps firmly to the joists (clamping range \(\frac{3}{4}\)" (2 cm) to 1'5" (43 cm)).
- Secure the guardrail planks to the handrail post plates.

Follow the directions in the User Information booklet "Handrail clamp S"!

Edge protection system XP

Assembly:

- Wedge the Railing clamps XP firmly to the joists (clamping range \(\frac{3}{4}\)" (2 cm) to 1'5" (43 cm)).
- Push the Handrail posts XP 1.20m into the post-holding fixtures on the railing clamps until the locking mechanism engages.
- Fit on a Protective grating XP or guardrail planks.
- Fix the Protective grating XP or the guardrail planks to the Handrail post XP.

Follow the directions in the User Information booklet "Edge protection system XP"!
Structural design

Follow the directions in the Calculation Guide 'DokaTruss table' or ask your Doka technician.

Segment TT 24'-0" 2G with 3 feet and 5 Standards TT

- Separate statitical verification must be performed!

Segment TT 24'-0" 2G with 5 feet and 5 Standards TT

a	11'-4" (345.5 cm)
b	5'-0" (162.5 cm)
c	6'-0" (183.0 cm)
d	2'-10 1/2" (87.4 cm)
d1	3'-7 1/2" (110.8 cm)
e	8'-0" (245.0 cm)
f	4'-4" (132.0 cm)

Permitted load

- Concrete load
- Live load
- Dead weight of the table incl. superstructure

\[
q_1 = 2 \text{ kips/ft} (29 \text{ kN/m})
\]

\[
q_2 = 0.3 \text{ kips/ft} (5 \text{ kN/m})
\]

\[
q_3 = 3.15 \text{ kips/ft} (46 \text{ kN/m})
\]

Max. point load on the bottom chord (during repositioning)

\[
F_1 = 10 \text{ kips} (45 \text{ kN})
\]

\[
F_2 = 2.25 \text{ kips} (10 \text{ kN})
\]

See the section headed "Additional measures for large tables".

Max. leg load

\[
V = 22.5 \text{ kips} (100 \text{ kN})
\]

for room heights of up to 9'-5" (2.87 m) (Adjustment leg TT) or 10'-1 1/2" (3.10 m) (Adjustment leg TT 2G)

Notice

Reduction in the permitted leg loads must be taken into account, depending on the room height!
Permitted leg loads, depending on the room height

The permitted leg loads depend on the following factors:

- **screw-jack foot** used
 (Screw-jack foot TT 3’ 2” or Screw-jack foot TT 4’ 2”)
- **adjustment leg** used
 (Adjustment leg TT or Adjustment leg TT 2G)
- **Positions** for fixing the feet to the Segment (1 - 5)
 (See the section headed "Height adjustment")

\[h \ldots \text{Room height} \]

A Screw jack foot TT 3'-2” or Screw jack foot TT 4'-2”
B Adjustment leg TT or Adjustment leg TT 2G

NOTICE
The leg loads stated here apply only for top-held tables. No horizontal loads are transferred!

Note:
For room heights over 13’-1 1/2” (4,00 m), instead of the feet Doka Super Props are mounted on the segment by means of Table heads Super Prop TT.
Consult your Doka technician for details.
Screw jack foot TT 3'-2" (imperial)

<table>
<thead>
<tr>
<th>Room height h [ft]</th>
<th>Fixing position</th>
<th>Adjustment leg TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>7'-5"</td>
<td>22.5</td>
<td>—</td>
</tr>
<tr>
<td>7'-11"</td>
<td>22.1</td>
<td>22.5</td>
</tr>
<tr>
<td>8'-5"</td>
<td>20.7</td>
<td>21.6</td>
</tr>
<tr>
<td>8'-11"</td>
<td>20.1</td>
<td>19.9</td>
</tr>
<tr>
<td>9'-5"</td>
<td>19.0</td>
<td>18.7</td>
</tr>
<tr>
<td>10'-1 1/2"</td>
<td>16.0</td>
<td>16.8</td>
</tr>
<tr>
<td>11'-1 1/2"</td>
<td>—</td>
<td>14.4</td>
</tr>
<tr>
<td>11'-7 1/2"</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12'-1 1/2"</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Screw jack foot TT 4'-2" (imperial)

<table>
<thead>
<tr>
<th>Room height h [ft]</th>
<th>Fixing position</th>
<th>Adjustment leg TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10'-7 1/2"</td>
<td>16.3</td>
<td>—</td>
</tr>
<tr>
<td>11'-1 1/2"</td>
<td>14.1</td>
<td>14.8</td>
</tr>
<tr>
<td>11'-7 1/2"</td>
<td>—</td>
<td>12.6</td>
</tr>
<tr>
<td>12'-1 1/2"</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>12'-7 1/2"</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>13'-1 1/2"</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Screw jack foot TT 3'-2" (metric)

<table>
<thead>
<tr>
<th>Room height h [m]</th>
<th>Pos. 5</th>
<th>Pos. 4</th>
<th>Pos. 3</th>
<th>Pos. 2</th>
<th>Pos. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.27</td>
<td>100.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2.42</td>
<td>98.3</td>
<td>100.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2.57</td>
<td>92.1</td>
<td>96.1</td>
<td>100.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2.72</td>
<td>89.4</td>
<td>88.5</td>
<td>93.0</td>
<td>100.0</td>
<td>—</td>
</tr>
<tr>
<td>2.87</td>
<td>84.5</td>
<td>83.2</td>
<td>84.5</td>
<td>89.9</td>
<td>97.4</td>
</tr>
<tr>
<td>3.10</td>
<td>71.2</td>
<td>74.7</td>
<td>76.5</td>
<td>79.2</td>
<td>84.1</td>
</tr>
<tr>
<td>3.25</td>
<td>—</td>
<td>64.1</td>
<td>69.4</td>
<td>72.5</td>
<td>76.1</td>
</tr>
<tr>
<td>3.40</td>
<td>—</td>
<td>—</td>
<td>58.3</td>
<td>65.4</td>
<td>69.4</td>
</tr>
<tr>
<td>3.55</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>54.3</td>
<td>61.8</td>
</tr>
<tr>
<td>3.70</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>50.7</td>
</tr>
</tbody>
</table>

Screw jack foot TT 4'-2" (metric)

<table>
<thead>
<tr>
<th>Room height h [m]</th>
<th>Pos. 5</th>
<th>Pos. 4</th>
<th>Pos. 3</th>
<th>Pos. 2</th>
<th>Pos. 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.25</td>
<td>72.5</td>
<td>—</td>
<td>—</td>
<td>57.8</td>
<td>56.0</td>
</tr>
<tr>
<td>3.40</td>
<td>62.7</td>
<td>65.8</td>
<td>—</td>
<td>50.7</td>
<td>55.6</td>
</tr>
<tr>
<td>3.55</td>
<td>—</td>
<td>56.0</td>
<td>60.1</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>3.70</td>
<td>—</td>
<td>—</td>
<td>50.7</td>
<td>55.6</td>
<td>—</td>
</tr>
<tr>
<td>3.85</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>46.3</td>
<td>52.0</td>
</tr>
<tr>
<td>4.00</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>42.7</td>
</tr>
</tbody>
</table>
Repositioning

General instructions on repositioning

WARNING

- The conveyance of persons is forbidden!
- Before repositioning the table form, remove any loose items (e.g. fitting planks) from it.

NOTICE

- It is only permitted to travel tables that have been assembled and braced in accordance with the assembly plans and erection rules given in the User Information booklet.
- Exposed fall-hazard locations open up at the slab edge while repositioning the table. The whole area around the table to be repositioned must be closed off by attaching an access prohibition barrier.
- Use personal fall-arrest systems to protect against falls (e.g. Doka personal fall-arrest set).
- It is forbidden for any third persons to linger in the immediate danger zone!
- Use tag-lines to ensure that the table is safely guided during the entire traveling operation.
- Stand tables unaided on firm, horizontal surfaces only.
- A suitable holdback restraint must be in place.
- The table must not be loaded – not even temporarily with e.g. a stack of panels – until it has been completely erected according to plan (after extending the required feet).

NOTICE

Observe the following points for horizontal traveling:

- Only use mechanical assistance described in this booklet for the traveling operation!
- Keep the travel route clean and free of any obstacles.
- Take particular care with:
 - height offsets
 - steps
 - floor holes
- Bridge any openings in the floor with sufficiently strong planking secured so that it cannot slip away to either side, or close off openings with sufficiently strong side railings!

Observe the following points for vertical repositioning by crane:

- It is important to ensure that the crane has sufficient lifting capacity.
- It is important to ensure that the lifting chains/cables have sufficient lifting capacity, as a function of the spread-angle.
- Take into account the space needed to reposition the formwork. Consider any obstacles, such as buildings, roads, high-tension power lines or cranes, in the vicinity!
- Max. wind speed during repositioning: 25 mph (40 km/h).

Note:

- Depending on the project, the actual repositioning procedure may differ from the descriptions given in this booklet.
- Follow the shop drawing / assembly plan or ask your Doka technician.
Horizontal traveling

Lowering device TT

The Lowering device TT is used together with the Lowering device adapter TT to lower the DokaTruss table onto the Trolley TT and the Edge roller TT.

At least 4 lowering devices are needed to lower the DokaTruss table!

Max. load per lowering device: 4410 lbs (2000 kg)

Follow the directions in the "Lowering device TT" Operating Instructions!

Preparations

Fit the adapter onto the Lowering device TT, and twist to secure.

Positions under the DokaTruss table

- **Version 1: under the bottom chord**
 - In the area 'b’ around the vertical leg

- **Version 2: under the foot**
 - Foot pinned in place in the vertical leg

NOTICE

The lowering device must not be positioned under a fully pushed in foot!
Trolley TT

The Trolley TT is used to travel the DokaTruss table horizontally. Trolley and table are moved together.

At least 2 trolleys are needed to travel the DokaTruss table!

Max. load per trolley: 3150 lbs (1430 kg)

Standard use

➤ Screw sleepers to the trolley.

a ... 10" (25 cm) (= height of edge roller)

b ... 6" (15 cm)

Use with the Screw jack foot TT

➤ Bolt the adapter to the stand-by position.

➤ Position the Screw jack foot TT and secure it with 2 fastening bolts.

Use with a floor prop

➤ Position the floor prop and secure it with fastening bolts.

If necessary, the Trolley TT can be fixed to the table with a Tie rod 15.0mm + sleeper + Super plate 15.0.
Edge roller TT

The Edge roller TT is used to travel the DokaTruss table horizontally. It is firmly placed on the floor-slab (in the area of the slab edge). The table is traveled on the rollers.

![Diagram of Edge roller TT](98109-204-14)

- a ... 10" (25 cm)
- c ... Distance from the slab edge min. 2'-0" (60 cm)

2 Edge rollers TT are needed to travel the DokaTruss table!

Max. load per Edge roller TT: 8100 lbs (3670 kg)

NOTICE
- Position the Edge roller TT a safe distance away from the slab edge!
- Secure the Edge roller TT so that it cannot fall off!

Additional measures for large tables

The Strengthening profile TT is used for stiffening the bottom chord of large DokaTruss tables during repositioning. It is bolted onto the bottom chord of the Segment TT.

![Diagram of Strengthening profile TT](98109-228-02)

- A Strengthening profile TT 4'-0"
- B Strengthening profile TT 5'-0"
- C Segment TT (bottom chord)

F₁ ... Max. point load (without strengthening profile):
10 kips (45 kN)

F₃ ... Max. point load (with strengthening profile):
15.2 kips (68 kN)

Assembly:

- Bolt Strengthening profiles TT to either side of the bottom chord of the Segment TT.
 - Width-across 30 mm

![Assembly diagram](98109-228-01)

- A Strengthening profile TT
- C Segment TT (bottom chord)

Nuts & bolts, etc. needed for every 2 Strengthening profiles TT:
- 3 hexagon bolts M20x140
- 3 hexagon nuts M20
Repositioning

Vertical repositioning by crane

Crane hoisting points

Table with 2 truss sections

Mounted to Segment TT (top chord):

<table>
<thead>
<tr>
<th>A</th>
<th>Segment TT (top chord)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Lifting adapter TT</td>
</tr>
<tr>
<td>C</td>
<td>Shackle Xclimb 60 6.5t</td>
</tr>
</tbody>
</table>

F ... Max. load:
14.6 kips (65 kN)

F_H ... Resulting horizontal force:
max. 1.4 kips (6 kN) - otherwise additional measures are needed.

Table with 3 truss sections

Mounted to the spreader beam:

D Spread beam (e.g. two C8 profiles or U200 S235 profiles; see shop drawing / assembly plan)
B Lifting adapter TT
C Shackle Xclimb 60 6.5t
E Truss section

F ... Max. load:
7.3 kips (32.5 kN)

Note:
Separate statical verification must be performed for tables with 3 truss sections weighing more than 15430 lbs (7000 kg).

Crane rigging with electric chain/cable hoist

A crane rigging with electric chain/cable hoist is used for vertical repositioning of the DokaTruss table. The electric chain/cable hoist is mounted to the rear lifting chains/cables. With remote control in hand, the operator stands on the top floor-slab, maintaining visual contact with the DokaTruss table to be repositioned. Required chain/cable length as shown in the shop drawing.
Repositioning operation

➤ Position the Lowering devices TT under the lowered (min. 2" (5 cm)) DokaTruss table.
➤ Secure the table to the building with securing cables.
➤ Use the Lowering devices TT to slightly and evenly raise the table.
The table rests on the Lowering devices TT.
The load is taken off the Fastening bolts TT of the feet.

Fully retract all the feet:
1) Screw in the Screw jack feet TT (C).
2) Retract Adjustable legs TT or adjustable legs TT 2G (D).
3) Pin the feet in place with Fastening bolts TT (E) and secure them with linch pins.

➤ Bring the Trolleys TT in position under the table.
➤ Position the Edge rollers TT under the table, a safe distance away from the slab edge.
➤ Use the Lowering devices TT to evenly lower the table.

The table now rests on the trolleys and on the edge rollers.
Remove the lowering devices.
Attach the front lifting chains or cables to the front crane hoisting points.

Push the table out of the building until the front chains or cables are beyond the slab edge.
Slightly raise the table by crane so that the front chains or cables become taut.

Push the table further out of the building until the rear crane hoisting points can be reached with the rear chains or cables.
While pushing the table further out, hold the rear chains or cables back from inside the building (e.g. with a cable).

Using an electric winch makes the tables easier to move. For more information, please contact your Doka technician.

NOTICE
The center of gravity of the table must remain within the building until all chains or cables have been attached to the table!
Attach the rear chains or cables (with chain/cable hoist already fitted) to the rear crane hoisting points.

- Push the table out of the building until the rear chains or cables are beyond the slab edge.
- At the same time, shorten the rear chains or cables with the chain/cable hoist until the crane hook is over the center of gravity of the table.
NOTICE
➤ Make sure that the table is in a horizontal position!
➤ Secure the trolleys and the edge rollers so that they cannot fall off the slab edge!

➤ Slightly raise the DokaTruss table. The table is suspended from the crane rigging in the horizontal.
➤ Detach the securing cables from the building and use them as tag-lines.
➤ Reposition the table to its new location.

➤ Remove the trolleys and edge rollers.
➤ Install reshoring props.
Lining and leveling DokaTruss tables

NOTICE

- Before lining and leveling, check whether all the feet are under load. Only feet that are actually standing on the ground can be lined and leveled.

The **Plastic mallet 4kg** is a handy tool for fine-positioning a tableform quickly without using any shifting devices. The mallet has been designed with just the right weight for this job, and with plastic of the right hardness.

Use correctly to avoid damage:
- Use in moderation, and only at the bottom of the feet.
- Use evenly on all feet.
- Give just one knock to each foot at a time, then move on to the next foot (max. swing distance 1'-8" (50 cm)).

Integrated base makes it easy to put the mallet on "stand-by":

![Mallet Image]
Assembly

General assembly instructions

Depending on the project, the actual design and sequence of operations may differ from the descriptions given in this booklet.

- Follow the shop drawing / assembly plan or ask your Doka technician.

NOTICE
- A hard, flat, firm surface is needed!
- Prepare a sufficiently large assembly area.

Fully retract all the feet – this reduces the overall height of the table during assembly.
1) Screw in the Screw jack feet TT (C).
2) Retract Adjustable legs TT or adjustable legs TT 2G (D).
3) Pin the feet in place with Fastening bolts TT (E) and secure them with linch pins.

NOTICE
Use a personal fall-arrest system to protect against falls when fixing the formwork sheets and mounting the guard rails (e.g. Doka personal fall-arrest set).

Suitable anchorage points:
- Connecting pin 10cm + Spring cotter 5mm in the top chord of the Segment TT
- Crane hoisting points

Bracing the Segments TT

- Place the first Segment TT on sleepers by crane. Keep the lifting chain/cable taut.
- Secure the Segment TT with temporary bracing to prevent it from tipping over.

Mounting the vertical diagonal crosses:
- Fit the vertical diagonal crosses onto the safety-catch bolts of the vertical legs.
- Secure the diagonal crosses with the safety catches.

- Detach the lifting chain/cable.
- Place the second Segment TT on the sleepers by crane, at the required center-to-center distance. Keep the lifting chain/cable taut.
- Join the Segment TT to the diagonal crosses.
- Secure the diagonal crosses with the safety catches.
➤ Arrange the segment gang so that both diagonals are the same (right angle).

![Diagram showing arrangement of diagonals]

x = y ... Diagonals

Mounting the horizontal diagonal crosses:

➤ Fit the horizontal diagonal crosses onto the Diagonal cross adapters TT.
➤ Secure the diagonal crosses with the safety catches.

![Diagram showing mounting of diagonal crosses]

➤ Detach the lifting chain/cable.

Mounting further Segments TT

➤ Place further Segments TT next to the segment gang. Keep the lifting chain/cable taut.

![Diagram showing placement of segments]

➤ Bolt the Segments TT to the segment gang with Splice plates C6 TT. Width-across 30 mm

Required tightening torque:
222 lb-ft (300 Nm (30 kgm))

![Diagram showing bolted segments]

➤ Fit the vertical and horizontal diagonal crosses and secure them.
➤ Detach the lifting chain/cable.
Crane hoisting points

➤ Mount the Shackle Xclimb 60 to the Lifting adapter TT.
➤ Bolt the Lifting adapter TT to the top chord of the Segment TT (position: see shop drawing / assembly plan).

Each shackle is supplied with:
▪ 1 threaded bolt M24x115
▪ 1 hexagon nut M24
▪ 1 cotter pin

Nuts & bolts, etc. needed for each lifting adapter:
▪ 1 hexagon bolt M20x100
▪ 1 hexagon nut M20
▪ 1 washer 20

Mounting the extension

➤ Lift the multi-purpose waling to the segment and bolt it on.
➤ Bolt the Diagonal brace TT to the segment.
➤ Tilt up the Diagonal brace TT and bolt it to the multi-purpose waling.

Nuts & bolts, etc. needed for each extension:
▪ 5 hexagon bolts M20x100
▪ 5 hexagon nuts M20
▪ 5 washers 20
Placing and attaching the Doka beams

Mount the Doka beams. Space the beams as shown in the project plan.

Flange clamp G

For fixing the Doka beams anywhere on the C6 Alu Channels (Segment TT) or on the multi-purpose walings (extension).

Note:
First push the flange clamps onto the Doka beam, and only then place the Doka beam onto the channels.

Tools needed:
▪ Reversible ratchet 1/2"
▪ Box nut 19 1/2" L

An impact screwdriver (with adjustable torque) makes assembly easier and faster.

Beam screws H8/70

For bolting the Doka beams to the multi-purpose waling (extension). The hammer-head is for slotting the beam screws into the oblong holes in the waling.

Tools needed:
▪ Drill bit, diam. 3/16" (10 mm)
▪ Fork wrench 13/17
A clamp assembly

For fixing the beams (timber formwork beams or aluminum beams) anywhere on the C6 Alu Channels (Segment TT).

Example with timber formwork beam:

![Diagram](image1.png)

a ... 8" (20.5 cm)

<table>
<thead>
<tr>
<th>A</th>
<th>A clamp assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>C6 Alu Channel (Segment TT)</td>
</tr>
<tr>
<td>C</td>
<td>Timber formwork beam</td>
</tr>
<tr>
<td>E</td>
<td>Beam screw H8/70</td>
</tr>
</tbody>
</table>

Example with aluminum beam:

![Diagram](image2.png)

a ... 8" (20.5 cm)

<table>
<thead>
<tr>
<th>A</th>
<th>A clamp assembly</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>C6 Alu Channel (Segment TT)</td>
</tr>
<tr>
<td>D</td>
<td>Aluminum beam</td>
</tr>
<tr>
<td>F</td>
<td>Hammer-head bolt</td>
</tr>
</tbody>
</table>

Tools needed:
- Reversible ratchet 1/2"
- Box nut 17 1/2" L
Fixing the formwork sheets

➤ Lay the formwork sheets and nail them onto each Doka beam. The grain of the face layer must run at right angles to the supports (Doka beams).

Cutting openings for crane hoisting points

➤ Cut out openings for the crane hoisting points.

![Diagram of Doka beam and hoisting points]

- a ... Center-to-center distance between beams
- b ... 1'-0" (30 cm)

<table>
<thead>
<tr>
<th>A</th>
<th>Segment TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Crane hoisting point</td>
</tr>
</tbody>
</table>

Before pouring, the opening is closed again with the cut-out plate.

Mounting the railings

➤ Push the Handrail post T into the multi-purpose walking and bolt it on.

![Diagram of Handrail post T and guardrail plank]

- h ... 5'-3 3/4" (1.60 m)
- A ... Segment TT
- B ... Crane hoisting point
- C ... Handrail post T 1.80m
- D ... Guardrail plank

Additional nuts & bolts, etc. needed for each handrail post:
- 1 hexagon bolt M20x100
- 1 hexagon nut M20
- 1 washer 20
General remarks

Combining with other Doka systems

Combining with Dokamatic tables or Dokaflex tables

In the transverse direction

Combining with DokaXtra, Dokaflex S or Doka Xtra

In the longitudinal direction

Close-up of extra beam:

Follow the directions in the "Dokamatic table" and "Dokaflex table" User Information booklets!
Transporting, stacking and storing

Segments TT

Thanks to their compact design, up to 8 Segments TT can be loaded onto a truck on top of one another – making for improved logistics and reduced shipping costs.

Side view:

<table>
<thead>
<tr>
<th>Segment TT 12'-0" 2G</th>
<th>Segment TT 24'-0" 2G</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

Rear view:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleeper approx. 4x4 (10 x 10 cm) (W x H)</td>
<td>Doka beam H20</td>
<td>Edge protector (when segments are strapped to the truck)</td>
<td>Lashing strap (in the area of the vertical legs)</td>
</tr>
</tbody>
</table>

Weight per stack:
- approx. 4500 lbs (2100 kg) / 8 Segments TT 12'-0"
- approx. 8000 lbs (3600 kg) / 8 Segments TT 24'-0"

- Segment TT 12'-0" 2G: max. 3 stacks per semi-trailer truck
- Segment TT 24'-0" 2G: max. 2 stacks per semi-trailer truck

Stacking the Segments TT

1) Place sleepers in the area of the vertical legs.
2) Place Doka beams H20 corresponding to the length of the stack onto the sleepers and screw them on.
3) Lay down the Segments TT, offset by approx. 4" (10 cm) with respect to one another.
 - All feet must be fully pushed in and pinned in place!
 - The fastening bolts must be secured with linch pins!
 - Do a sight-check!
4) Lay a Doka beam H20 flat on two vertical legs, respectively, as an intermediate layer (e.g. for Segment TT 24'-0" 2G: 4 Doka beams H20 1.80 per layer).
5) Add edge protectors to prevent damage to the segments.

NOTICE
- Stack max. 8 segments on top of one another!
- Never climb onto the stack of segments.
- Before being transported by truck, the segments must be strapped down securely.
Segments TT with extensions already mounted

Extensions can be pre-mounted to the Segments TT.
➤ Place squared timbers between the pre-mounted extension and the Segment TT.
➤ Strap the extension to the Segment TT.

Nuts & bolts, etc. needed for each extension:
▪ 5 hexagon bolts M20x100
▪ 5 hexagon nuts M20
▪ 5 washers 20

Repositioning Segments TT by crane

The Dokamatic lifting strap 13.00m is a lifting accessory that is only suitable for lifting Doka tableforms and stacked Doka panels.
2 Dokamatic lifting straps are needed for each unit to be lifted.

Max. lifting capacity:
4400 lbs (2000 kg) / Dokamatic lifting strap 13.00m

A movable, 42'-8" (8 m) long protective hose enables the table to stay in the horizontal when being lifted, and protects the strap fabric.

Follow the directions in the Operating Instructions!

Repositioning stacks of segments

To reposition stacks of segments, the Dokamatic lifting strap 13.00m is used.

NOTICE
Position the lifting strap so as to prevent the strap from sliding out of position and the aluminium profiles from deforming!

Repositioning single Segments TT

To lift single Segments TT face down, the Dokamatic lifting strap 13.00m is used.

To lift single Segments TT long side down, Lifting adapters TT (A) and Shackles Xclimb 60 6.5t (B) are used (see the section headed "Assembly instructions").
Pre-assembled DokaTruss tables

Smaller sized DokaTruss tables can be transported fully pre-assembled.

a, b, c ... Max. permissible sizes (Observe all local standards and regulations!)

A Sleeper approx. 4x4 (10 x 10 cm) (W x H)
D Lashing strap (in the area of the vertical legs)

NOTICE
- The DokaTruss table must be strapped to the truck securely!
- Place sleepers in the area of the vertical legs.

Intermediate storage of tables

NOTICE
- Observe the following regarding intermediate storage of assembled tables:
 - Only set down tables on level, firm surfaces.
 - In exposed locations, secure against wind pressure.
 - If space is restricted and finished tables have to be stacked on top of each other, they have to be secured against all climatic influences! Depending on the situation, a separate check is necessary!
Doka skeleton transport box
1.70x0.80m

Storage and transport device for small items

Max. load-bearing capacity: 700 kg (1540 lbs)
Permitted imposed load: 3150 kg (6950 lbs)

To make the Doka skeleton transport box easier to load and unload, one of its sidewalls can be opened.

Using Doka skeleton transport boxes 1.70x0.80m as storage units

Max. n° of units on top of one another

<table>
<thead>
<tr>
<th></th>
<th>Outdoors (on the site)</th>
<th>Indoors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Floor gradient up to 3 %</td>
<td>Floor gradient up to 1 %</td>
</tr>
<tr>
<td>Max. n° of units</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>It is not allowed to stack empty pallets on top of one another!</td>
<td></td>
</tr>
</tbody>
</table>

NOTICE

Stacked multi-trip boxes or pallets must have the heaviest boxes at the bottom and the lightest at the top.

Using Doka skeleton transport boxes 1.70x0.80m as transport devices

Lifting by crane

NOTICE

- Multi-trip packaging items may only be lifted one at a time.
- Only lift the boxes when their sidewalls are closed!
- Use a suitable lifting chain (e.g. Doka 4-part chain 3.20m). Do not exceed permitted load capacity.
- Spread-angle β max. 30°!

Shifting boxes with the forklift or pallet stacking truck

The forks can be inserted under either the broadside or the narrowside of the containers.
Doka multi-trip transport box

Storage and transport device for small items.

Doka multi-trip transport box 1.20x0.80m

Different items in the Doka multi-trip transport box can be kept separate with the Multi-trip transport box partitions 1.20m or 0.80m.

Max. load-bearing capacity: 1500 kg (3300 lbs)
Permitted imposed load: 7850 kg (17300 lbs)

Possible ways of dividing the box

<table>
<thead>
<tr>
<th>Multi-trip transport box partition</th>
<th>in the longitudinal direction</th>
<th>in the transverse direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.20 m</td>
<td>max. 3 partitions</td>
<td>-</td>
</tr>
<tr>
<td>0.80 m</td>
<td>-</td>
<td>max. 3 partitions</td>
</tr>
</tbody>
</table>

A Slide-bolt for fixing the partition

Notices

- It is not allowed to stack empty pallets on top of one another!

NOTICE

Stacked multi-trip boxes or pallets must have the heaviest boxes at the bottom and the lightest at the top.

Using Doka multi-trip transport boxes as transport devices

Lifting by crane

NOTICE

- Multi-trip packaging items may only be lifted one at a time.
- Use a suitable crane lifting tackle (e.g. Doka 4-part chain 3.20m).
 Do not exceed the permitted load-bearing capacity.
- Spread angle β max. 30°
Shifting boxes with the forklift or pallet stacking truck

The forks can be inserted under either the broadside or the narrowside of the containers.

Doka stacking pallet 1.55x0.85m and 1.20x0.80m

Storage and transport devices for long items.

Max. load-bearing capacity: 1100 kg (2420 lbs)
Permitted imposed load: 5900 kg (12980 lbs)

Using Doka stacking pallets as storage units

<table>
<thead>
<tr>
<th>Outdoors (on the site)</th>
<th>Indoors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor gradient up to 3%</td>
<td>Floor gradient up to 1%</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Do not stack empty pallets on top of one another!

NOTICE

- Stacked multi-trip boxes or pallets must have the heaviest boxes at the bottom and the lightest at the top.
- **How to use with Bolt-on caster set B:**
 - Always apply the fixing brake when the container is "parked".
 - When Doka stacking pallets are stacked, the bottom pallet must NOT be one with a bolt-on caster set mounted to it.

Using Doka stacking pallets as transport devices

Lifting by crane

NOTICE

- Multi-trip packaging items may only be lifted one at a time.
- Use a suitable lifting chain (e.g. Doka 4-part chain 3.20m). Do not exceed permitted load capacity.
- Load the items centrically.
- Fasten the load to the stacking pallet so that it cannot slide or tip out.
- When lifting stacking pallets to which Bolt-on caster sets B have been attached, you must also follow the directions in these Operating Instructions!
- Spread-angle \(\beta \) max. 30°!

Shifting boxes with the forklift or pallet stacking truck

NOTICE

- Load the items centrically.
- Fasten the load to the stacking pallet so that it cannot slide or tip out.
Doka accessory box

Storage and transport devices for small items.

Max. load-bearing capacity: 1000 kg (2200 lbs)
Permitted imposed load: 5530 kg (12191 lbs)

Using Doka accessory boxes as transport devices

Lifting by crane

NOTICE
- Multi-trip packaging items may only be lifted one at a time.
- Use a suitable lifting chain (e.g. Doka 4-part chain 3.20m). Do not exceed permitted load capacity.
- When lifting stacking pallets to which Bolt-on caster sets B have been attached, you must also follow the directions in the relevant Operating Instructions!
- Spread-angle \(\beta \) max. 30°!

Shifting boxes with the forklift or pallet stacking truck

The forks can be inserted under either the broadside or the narrowside of the containers.

Bolt-on caster set B

The Bolt-on caster set B turns the stacking pallet into a fast and maneuverable transport trolley.

Suitable for drive-through access openings > 3'-0" (90 cm).

The Bolt-on caster set B can be mounted to the following multi-trip packaging items:
- Doka accessory box
- Doka stacking pallets

Follow the directions in the Operating Instructions!
Fall protection on the structure

Handrail post XP 1.20m

- Attached with screw-on shoe, railing clamp, handrail-post shoe or Step bracket XP
- Protective grating XP, guardrail planks or scaffold tubes can be used as safety barrier

Doka slab edge clamp

- Slab bulkheads and safety barriers in one system
- Follow the directions in the User Information booklet "Doka floor end-shutter clamp".

Handrail clamp T

- Fixed to embedded anchoring components or reinforcement hoops
- Guardrail planks or scaffold tubes can be used as safety barrier

Handrail clamp S

- Attached with integral clamp
- Guardrail planks or scaffold tubes can be used as safety barrier

Handrail post 1.10m

- Fixed in a Screw sleeve 20.0 or Attachable sleeve 24mm
- Guardrail planks or scaffold tubes can be used as safety barrier
Reshoring props, concrete technology and stripping

When is the best time to strip the formwork?

The concrete strength needed before the formwork can be stripped will depend upon the load factor α. This can be read off from the following table.

Load factor α

This is calculated by:

$$\alpha = \frac{OWD + LL_{\text{construction state}}}{OWD + OW_{\text{finishing}} + LL_{\text{final state}}}$$

<table>
<thead>
<tr>
<th>Slab thickness d [m]</th>
<th>Dead-weight load OW_D [kN/m²]</th>
<th>Load factor α</th>
<th>LLfinal state</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.00 kN/m²</td>
<td>3.00 kN/m²</td>
<td>4.00 kN/m²</td>
</tr>
<tr>
<td>0.14</td>
<td>3.50</td>
<td>0.67</td>
<td>0.59</td>
</tr>
<tr>
<td>0.16</td>
<td>4.00</td>
<td>0.69</td>
<td>0.61</td>
</tr>
<tr>
<td>0.18</td>
<td>4.50</td>
<td>0.71</td>
<td>0.63</td>
</tr>
<tr>
<td>0.20</td>
<td>5.00</td>
<td>0.72</td>
<td>0.65</td>
</tr>
<tr>
<td>0.22</td>
<td>5.50</td>
<td>0.74</td>
<td>0.67</td>
</tr>
<tr>
<td>0.25</td>
<td>6.00</td>
<td>0.76</td>
<td>0.69</td>
</tr>
<tr>
<td>0.30</td>
<td>7.00</td>
<td>0.78</td>
<td>0.72</td>
</tr>
<tr>
<td>0.35</td>
<td>8.75</td>
<td>0.80</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Valid for a finishing-load $OW_{\text{finishing}} = 2.00$ kN/m² and a live load in the early-stripped state of $LL_{\text{construction state}} = 1.50$ kN/m²

OW_D: calculated with $\gamma_{\text{concrete}} = 25$ kN/m³
$OW_{\text{finishing}}$: load for floor finish, etc.

Example: Slab thickness 0.20 m with a final live load of 5.00 kN/m² results in a load factor α of 0.54.

This means that stripping / stress-release can take place once the concrete has reached 54% of its 28-day strength. The load-bearing capacity will then correspond to that of the finished structure.

NOTICE

If the floor props are not stress-relieved, meaning that the slab has not been activated, then the props will remain loaded with the dead weight of the floor-slab.

When the floor above is concreted, this may lead to a doubling of the load that is being applied to the floor props.

The floor props are not designed to cope with such an overload, and the result may be damage to the formwork, the floor props and the structure.

What guidelines can be used for shoring and reshoring?

The American Concrete Institute, Committee 347 has issued two references that provide basic guidelines for general formwork operations.

The first is ACI 347R-14 'Guide to Formwork for Concrete' and the second is ACI 347.2R-17 'Guide for Shoring/Reshoring of Concrete Multistory Buildings'.

Both of these guides describe methods to evaluate the effects of the shoring and reshoring operation that can be used by the engineer/architect to determine the structural behavior of the building during construction.

The contractor, formwork designer and engineer/architect should collaborate to develop a rational shoring/reshoring design that is economical, functional and safe.

Why put up reshoring props after stripping the formwork?

After the formwork has been stripped and the slab has been stress-relieved or deshored, the slab is able to bear its own weight and live loads resulting from the construction state, but not the concreting loads from subsequent floor-slabs.

The temporary reshoring serves to support the floor-slab and distribute the concreting loads across several floors.
Positioning the reshoring props correctly

Reshoring props have the job of spreading loads between the new floor-slab and the floor beneath it. This load distribution will depend on the relationship between the rigidity of these two floor-slabs.

NOTICE
Ask an expert!
As a rule, the question of using reshoring props should be referred to the responsible experts, regardless of the information given above. Observe all local standards and regulations!

Strength development in the new concrete

Rough reference values can be found in DIN 1045-3:2008, Table 2. The length of time until 50 % of the final (28-day) strength is reached can be read off from this Table as a function of the temperature and the type of concrete.

The values are only valid if the concrete is given correct, appropriate curing throughout the entire period.

For a concrete with medium strength development, the following inferred diagram may thus be used.

Concrete-strength development – medium

Deflection of the new concrete

The modulus of elasticity of the concrete develops more quickly than its compressive strength. At a compressive strength f_{ck} of about 60 %, the concrete’s modulus of elasticity $E_{c(28)}$ has reached approximately 90 %.

The increase in the elastic deformation taking place in the new concrete is thus only negligible.

The creep deformation, which only finally ceases after several years, is several times more than the elastic deformation.

Early stripping – e.g. after 3 days instead of 28 – thus only leads to an increase in the total deformation of less than 5 %.

The part of this deformation accounted for by creep deformation, however, may be anything between 50 % and 100 % of the standard value, due to such variable influences as the strength of the aggregates, and the atmospheric humidity. This means that the total deflection of the floor-slab is practically independent of the time at which the formwork was struck.

Cracks in new concrete

The bonding strength between the reinforcement steel and the concrete develops more rapidly in the new concrete than does its compressive strength. This means that early stripping does not have any negative influence upon the size and distribution of cracks on the tension side of reinforced concrete constructions.

Other cracking phenomena can be countered effectively by appropriate curing methods.

Curing of new concrete

New site-placed concrete is exposed to influences which may cause cracking and slow down its strength development:

- premature drying
- over-rapid cooling in the first few days
- excessively low temperatures or frost
- mechanical damage to the surface of the concrete
- hydration heat
- etc.

The simplest precaution is to leave the formwork on the concrete surface for longer. As well as the familiar extra curing measures, this measure should be carried out in any case.
Taking load off formwork for wide-spanned floor-slabs with support centers over 24'-7" (7.5 m)

In the case of thin, wide-spanned concrete floor-slabs (e.g. in multistory car parks), the following points must be taken into consideration:

▪ When the load is taken off the floor props, the floor props that are still in place are briefly subjected to additional loads. This may lead to overloading, and to the floor props being damaged.

▪ Please consult your Doka technician.

NOTICE

The basic rule is:

▪ Stress-release should **always be carried out working from one side towards the other, or from the middle of the floor-slab (mid-span) towards the slab edges.** It is imperative to adopt this procedure for wide spans!

▪ **Do not under any circumstances attempt stress release from both sides toward the middle!**
<table>
<thead>
<tr>
<th>Product overview</th>
<th>User Information</th>
<th>DokaTruss table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segment TT 12'-0" 2G
Segment TT 12'-0" 2G
Height: 5'-5" (165 cm)</td>
<td>306.0</td>
<td>586694000</td>
</tr>
<tr>
<td>Segment TT 24'-0" 2G
Segment TT 24'-0" 2G
Height: 5'-5" (165 cm)</td>
<td>580.0</td>
<td>586695000</td>
</tr>
<tr>
<td>C6 Alu Channel top TT 12'-0"
C6 Alu-Profil oben TT 12'-0"
Aluminum</td>
<td>30.9</td>
<td>586650000</td>
</tr>
<tr>
<td>C6 Alu Channel bottom TT 12'-0"
C6 Alu-Profil unten TT 12'-0"
Aluminum</td>
<td>30.9</td>
<td>586651000</td>
</tr>
<tr>
<td>C6 Alu Channel top TT 24'-0"
C6 Alu-Profil oben TT 24'-0"
Aluminum</td>
<td>60.6</td>
<td>586652000</td>
</tr>
<tr>
<td>C6 Alu Channel bottom TT 24'-0"
C6 Alu-Profil unten TT 24'-0"
Aluminum</td>
<td>60.6</td>
<td>586653000</td>
</tr>
<tr>
<td>Standard TT 2G
Stiel TT 2G
Painted yellow
Height: 4'-11" (149 cm)</td>
<td>32.0</td>
<td>586682000</td>
</tr>
<tr>
<td>Strut TT 2G
Strebe TT 2G
Painted yellow
Length: 6'-4" (194 cm)</td>
<td>28.7</td>
<td>586683000</td>
</tr>
<tr>
<td>Diagonal brace TT 6'-0"
Diagonalsstrebe TT 6'-0"
Painted yellow
Length: 6'-4" (193 cm)</td>
<td>26.9</td>
<td>586658000</td>
</tr>
<tr>
<td>Splice plate C6 TT
Verbindungslasche C6 TT
Galvanized
Length: 2'-7" (80 cm)</td>
<td>20.5</td>
<td>586659000</td>
</tr>
<tr>
<td>Splice plate C6/WS10 TT
Verbindungslasche C6/WS10 TT
Painted blue
Length: 1'-2" (36 cm)</td>
<td>14.3</td>
<td>586660000</td>
</tr>
<tr>
<td>Diagonal cross adapter TT
Diagonalkreuzadapter TT
Galvanized
Height: 7 ½" (19 cm)</td>
<td>1.8</td>
<td>586661000</td>
</tr>
<tr>
<td>Spacer C6 TT
Distanzhalter C6 TT
Galvanized
Height: 6" (15,3 cm)</td>
<td>1.9</td>
<td>586662000</td>
</tr>
<tr>
<td>End protector C6 TT
Endschutz C6 TT
Galvanized
Length: 7" (17,5 cm)</td>
<td>6.4</td>
<td>586663000</td>
</tr>
<tr>
<td>Article</td>
<td>Description</td>
<td>[lbs]</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>Screw-set splice plate C6 TT top</td>
<td>Schraubensatz Verbindungs lasche C6 TT oben</td>
<td>4.2</td>
</tr>
<tr>
<td>Screw-set splice plate C6 TT bottom</td>
<td>Schraubensatz Verbindungs lasche C6 TT unten</td>
<td>5.3</td>
</tr>
<tr>
<td>Fastening bolt TT</td>
<td>Absteckbolzen TT</td>
<td>3.5</td>
</tr>
<tr>
<td>Adjustment leg TT 2G</td>
<td>Justierstiel TT 2G</td>
<td>20.9</td>
</tr>
<tr>
<td>Adjustment leg TT</td>
<td>Justierstiel TT</td>
<td>20.5</td>
</tr>
<tr>
<td>Screw jack TT 3'-2"</td>
<td>Fußspindel TT 3'-2"</td>
<td>23.1</td>
</tr>
<tr>
<td>Screw jack TT 4'-2"</td>
<td>Fußspindel TT 4'-2"</td>
<td>27.6</td>
</tr>
<tr>
<td>Screw jack anti-dropout lock TT</td>
<td>Fußspindelsicherung TT</td>
<td>0.49</td>
</tr>
<tr>
<td>Table head Super Prop TT</td>
<td>Tischkopf Super Prop TT</td>
<td>35.5</td>
</tr>
<tr>
<td>Lifting adapter TT</td>
<td>Umsetzadapter TT</td>
<td>8.6</td>
</tr>
<tr>
<td>Shackle Xclimb 60 6.5t</td>
<td>Schäkel Xclimb 60 6,5t</td>
<td>4.4</td>
</tr>
<tr>
<td>Diagonal cross TT 12'-0"</td>
<td>Diagonalkreuz TT 12'-0"</td>
<td>26.7</td>
</tr>
</tbody>
</table>

Galvanized

Width-across: 30 mm

Length: 10" (26.5 cm)

Height: 4'-5" (133,5 cm)

Height: 2 1/2" (6.4 cm)

Height: 5 1/2" (14,5 cm)

Follow the directions in the "Operating Instructions"!

Height: 9" (24 cm)
Product overview

Diagonal cross

<table>
<thead>
<tr>
<th>Length</th>
<th>Diameter</th>
<th>Article #</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.100</td>
<td>9.0</td>
<td>582772000</td>
</tr>
<tr>
<td>9.150</td>
<td>11.5</td>
<td>582773000</td>
</tr>
<tr>
<td>9.175</td>
<td>13.4</td>
<td>582334000</td>
</tr>
<tr>
<td>9.200</td>
<td>14.6</td>
<td>582774000</td>
</tr>
<tr>
<td>9.250</td>
<td>17.0</td>
<td>582775000</td>
</tr>
<tr>
<td>9.300</td>
<td>19.8</td>
<td>582335000</td>
</tr>
<tr>
<td>12.100</td>
<td>10.1</td>
<td>582610000</td>
</tr>
<tr>
<td>12.150</td>
<td>12.6</td>
<td>582612000</td>
</tr>
<tr>
<td>12.175</td>
<td>13.9</td>
<td>582336000</td>
</tr>
<tr>
<td>12.200</td>
<td>15.2</td>
<td>582614000</td>
</tr>
<tr>
<td>12.250</td>
<td>18.3</td>
<td>582616000</td>
</tr>
<tr>
<td>12.300</td>
<td>20.5</td>
<td>582325000</td>
</tr>
<tr>
<td>18.100</td>
<td>15.2</td>
<td>582620000</td>
</tr>
<tr>
<td>18.150</td>
<td>17.2</td>
<td>582622000</td>
</tr>
<tr>
<td>18.175</td>
<td>17.2</td>
<td>582336000</td>
</tr>
<tr>
<td>18.200</td>
<td>17.2</td>
<td>582624000</td>
</tr>
<tr>
<td>18.250</td>
<td>20.1</td>
<td>582626000</td>
</tr>
<tr>
<td>18.300</td>
<td>22.7</td>
<td>582326000</td>
</tr>
</tbody>
</table>

Strengthening profile

<table>
<thead>
<tr>
<th>Length</th>
<th>Diameter</th>
<th>Article #</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'-0"</td>
<td>45.2</td>
<td>586673000</td>
</tr>
<tr>
<td>4'-0"</td>
<td>35.3</td>
<td>586674000</td>
</tr>
</tbody>
</table>

Tilting connector TT

<table>
<thead>
<tr>
<th>Length</th>
<th>Diameter</th>
<th>Article #</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.8</td>
<td>586675000</td>
<td></td>
</tr>
</tbody>
</table>

Drop beam waling TT

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Article #</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.0</td>
<td>586677000</td>
</tr>
</tbody>
</table>

Beam screw H/70

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Article #</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13</td>
<td>580117000</td>
</tr>
</tbody>
</table>

Flange clamp G

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Article #</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>580120000</td>
</tr>
</tbody>
</table>

A clamp assembly

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Article #</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.33</td>
<td>585752000</td>
</tr>
</tbody>
</table>

Connecting pin 10cm

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Article #</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>580201000</td>
</tr>
</tbody>
</table>

Spring cotter 5mm

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Article #</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.066</td>
<td>580204000</td>
</tr>
</tbody>
</table>

Lowering device TT

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Article #</th>
</tr>
</thead>
<tbody>
<tr>
<td>136.0</td>
<td>586678000</td>
</tr>
</tbody>
</table>

Lowering device adapter TT

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Article #</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6</td>
<td>586679000</td>
</tr>
<tr>
<td>Article #</td>
<td>lbs</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>Edge roller TT</td>
<td>54.2</td>
</tr>
<tr>
<td>Galvanized</td>
<td>Length: 1'-2" (35 cm)</td>
</tr>
<tr>
<td>Trolley TT</td>
<td>64.4</td>
</tr>
<tr>
<td>Galvanized</td>
<td>Length: 2'-4" (70 cm)</td>
</tr>
<tr>
<td>Super plate 15.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Galvanized</td>
<td>Height: 2 1/2" (6 cm)</td>
</tr>
<tr>
<td>Tie rod 15.0mm galvanized 0.50m</td>
<td>1.6</td>
</tr>
<tr>
<td>Tie rod 15.0mm galvanized 0.75m</td>
<td>2.4</td>
</tr>
<tr>
<td>Tie rod 15.0mm galvanized 1.00m</td>
<td>3.1</td>
</tr>
<tr>
<td>Tie rod 15.0mm galvanized 1.25m</td>
<td>4.0</td>
</tr>
<tr>
<td>Tie rod 15.0mm galvanized 1.50m</td>
<td>4.6</td>
</tr>
<tr>
<td>Tie rod 15.0mm galvanized 1.75m</td>
<td>5.5</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 0.50m</td>
<td>1.6</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 0.75m</td>
<td>2.4</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 1.00m</td>
<td>3.1</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 1.25m</td>
<td>4.0</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 1.50m</td>
<td>4.6</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 1.75m</td>
<td>5.5</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 2.00m</td>
<td>6.4</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 2.50m</td>
<td>7.9</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 3.00m</td>
<td>9.5</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 3.50m</td>
<td>11.0</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 4.00m</td>
<td>12.6</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 5.00m</td>
<td>15.9</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 6.00m</td>
<td>19.0</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 7.50m</td>
<td>23.6</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treatedm</td>
<td>3.1</td>
</tr>
<tr>
<td>Screw-on coupler 48mm 50</td>
<td>1.9</td>
</tr>
<tr>
<td>Screw-on coupler 48mm 95</td>
<td>1.9</td>
</tr>
<tr>
<td>Galvanized</td>
<td>Width-across: 22 mm</td>
</tr>
<tr>
<td>Swivel coupler 48mm</td>
<td>3.3</td>
</tr>
<tr>
<td>Drehkupplung 48mm</td>
<td>Galvanized</td>
</tr>
<tr>
<td></td>
<td>Follow fitting instructions!</td>
</tr>
<tr>
<td>Brace stirrup 8</td>
<td>6.0</td>
</tr>
<tr>
<td>Spannbügel 8</td>
<td>Galvanized</td>
</tr>
<tr>
<td></td>
<td>Height: 1'-6" (46 cm)</td>
</tr>
<tr>
<td></td>
<td>Width-across: 30 mm</td>
</tr>
<tr>
<td>Safety plate for brace stirrup 8</td>
<td>0.11</td>
</tr>
<tr>
<td>Sicherungsblech für Spannbügel 8</td>
<td>red</td>
</tr>
<tr>
<td>Dokamatic strut connection</td>
<td>2.9</td>
</tr>
<tr>
<td>Dokamatic-Stützenanschluss</td>
<td>Galvanized</td>
</tr>
<tr>
<td>Dokamatic scaffold connection</td>
<td>7.5</td>
</tr>
<tr>
<td>Dokamatic-Gerüstanschluss</td>
<td>Galvanized</td>
</tr>
<tr>
<td>Spring locked connecting pin 16mm</td>
<td>0.55</td>
</tr>
<tr>
<td>Federbolzen 16mm</td>
<td>Galvanized</td>
</tr>
<tr>
<td>Doka express anchor 16x125mm</td>
<td>0.68</td>
</tr>
<tr>
<td>Doka-Expressanker 16x125mm</td>
<td>Galvanized</td>
</tr>
<tr>
<td></td>
<td>Follow fitting instructions!</td>
</tr>
<tr>
<td>Doka coil 16mm</td>
<td>0.02</td>
</tr>
<tr>
<td>Doka-Coil 16mm</td>
<td>Galvanized</td>
</tr>
<tr>
<td>Supporting head H20 DF</td>
<td>1.7</td>
</tr>
<tr>
<td>Haltekopf H20 DF</td>
<td>Galvanized</td>
</tr>
<tr>
<td></td>
<td>Width: 4 1/2" (11 cm)</td>
</tr>
<tr>
<td></td>
<td>Height: 3 1/2" (8 cm)</td>
</tr>
<tr>
<td>Alu box beam supporting head</td>
<td>1.6</td>
</tr>
<tr>
<td>Haltekopf Schalungsträger Alu</td>
<td>Galvanized</td>
</tr>
<tr>
<td>Article #</td>
<td>Article #</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Universal end-shutter support 30cm</td>
<td>Universal Abschalwinkel 30cm</td>
</tr>
<tr>
<td>Universal-Abschalwinkel 30cm</td>
<td>Galvanized</td>
</tr>
<tr>
<td>Framax S universal corner waling</td>
<td>Painted blue</td>
</tr>
<tr>
<td>Framax S-Eckklemmschiene</td>
<td>Leg length: 2' (60 cm)</td>
</tr>
<tr>
<td>Dokamatic edge clamp 0.70m</td>
<td>Galvanized</td>
</tr>
<tr>
<td>Dokamatic-Randklemme 0.70m</td>
<td></td>
</tr>
<tr>
<td>Frami universal fixing bolt 5-12cm</td>
<td>Galvanized</td>
</tr>
<tr>
<td>Frami-Universalverbinder 5-12cm</td>
<td>Length: 9" (23 cm)</td>
</tr>
<tr>
<td>Screw-on handrail post 1.50m</td>
<td>Galvanized</td>
</tr>
<tr>
<td>Anschraubgeländer 1.50m</td>
<td></td>
</tr>
<tr>
<td>Handrail post T 1.80m</td>
<td>Galvanized</td>
</tr>
<tr>
<td>Einschubgeländer T 1.80m</td>
<td></td>
</tr>
<tr>
<td>Handrail clamp S</td>
<td>Galvanized</td>
</tr>
<tr>
<td>Schutzgeländerzwinge S</td>
<td>Height: 4'- 5'-7" (123 - 171 cm)</td>
</tr>
<tr>
<td>Handrail clamp T</td>
<td>Galvanized</td>
</tr>
<tr>
<td>Schutzgeländerzwinge T</td>
<td>Height: 4'- 5'-1" (122 - 155 cm)</td>
</tr>
<tr>
<td>Strip tensioner B 6.00m</td>
<td>Galvanized</td>
</tr>
<tr>
<td>Bandzwinge B 6.00m</td>
<td>Special order only!</td>
</tr>
<tr>
<td>Lashing strap 5.00m</td>
<td>Yellow</td>
</tr>
<tr>
<td>Zurlgurt 5,00m</td>
<td></td>
</tr>
<tr>
<td>Plastic mallet 4kg</td>
<td>Blue</td>
</tr>
<tr>
<td>Kunststoffhammer 4kg</td>
<td>Length: 3'-7" (110 cm)</td>
</tr>
<tr>
<td>Doka personal fall-arrest set</td>
<td>Galvanized</td>
</tr>
<tr>
<td>Doka-Auffanggurt</td>
<td></td>
</tr>
<tr>
<td>Follow the directions in the "Operating Instructions"!</td>
<td></td>
</tr>
<tr>
<td>Article #</td>
<td>lbs</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>Doka beam H20 top N 1.80m</td>
<td>18.7</td>
</tr>
<tr>
<td>Doka beam H20 top N 2.45m</td>
<td>25.4</td>
</tr>
<tr>
<td>Doka beam H20 top N 2.65m</td>
<td>27.6</td>
</tr>
<tr>
<td>Doka beam H20 top N 2.90m</td>
<td>30.0</td>
</tr>
<tr>
<td>Doka beam H20 top N 3.30m</td>
<td>34.2</td>
</tr>
<tr>
<td>Doka beam H20 top N 3.60m</td>
<td>37.3</td>
</tr>
<tr>
<td>Doka beam H20 top N 3.90m</td>
<td>40.3</td>
</tr>
<tr>
<td>Doka beam H20 top N 4.50m</td>
<td>46.7</td>
</tr>
<tr>
<td>Doka beam H20 top N 4.90m</td>
<td>50.7</td>
</tr>
<tr>
<td>Doka beam H20 top N 5.90m</td>
<td>61.1</td>
</tr>
<tr>
<td>Doka beam H20 top Nm</td>
<td>10.4</td>
</tr>
<tr>
<td>Doka beam H20 top Nm BS</td>
<td>10.4</td>
</tr>
<tr>
<td>Doka-Träger H20 top N</td>
<td></td>
</tr>
<tr>
<td>Doka beam H20 top P 1.80m</td>
<td>20.9</td>
</tr>
<tr>
<td>Doka beam H20 top P 2.45m</td>
<td>28.7</td>
</tr>
<tr>
<td>Doka beam H20 top P 2.65m</td>
<td>31.1</td>
</tr>
<tr>
<td>Doka beam H20 top P 2.90m</td>
<td>34.0</td>
</tr>
<tr>
<td>Doka beam H20 top P 3.30m</td>
<td>38.6</td>
</tr>
<tr>
<td>Doka beam H20 top P 3.60m</td>
<td>42.1</td>
</tr>
<tr>
<td>Doka beam H20 top P 3.90m</td>
<td>45.6</td>
</tr>
<tr>
<td>Doka beam H20 top P 4.50m</td>
<td>57.3</td>
</tr>
<tr>
<td>Doka beam H20 top P 4.90m</td>
<td>69.0</td>
</tr>
<tr>
<td>Doka beam H20 top P 5.90m</td>
<td>11.7</td>
</tr>
<tr>
<td>Doka beam H20 top Pm</td>
<td>11.7</td>
</tr>
<tr>
<td>Doka beam H20 top P 11'-6"</td>
<td>41.0</td>
</tr>
<tr>
<td>Doka beam H20 top P 16'-0"</td>
<td>57.1</td>
</tr>
<tr>
<td>Doka-Träger H20 top N</td>
<td></td>
</tr>
<tr>
<td>Doka-Träger H20 top P</td>
<td></td>
</tr>
<tr>
<td>Doka beam H20 eco N 1.80m</td>
<td>18.7</td>
</tr>
<tr>
<td>Doka beam H20 eco N 2.45m</td>
<td>25.4</td>
</tr>
<tr>
<td>Doka beam H20 eco N 2.65m</td>
<td>27.6</td>
</tr>
<tr>
<td>Doka beam H20 eco N 2.90m</td>
<td>30.0</td>
</tr>
<tr>
<td>Doka beam H20 eco N 3.30m</td>
<td>34.2</td>
</tr>
<tr>
<td>Doka beam H20 eco N 3.60m</td>
<td>37.3</td>
</tr>
<tr>
<td>Doka beam H20 eco N 3.90m</td>
<td>40.3</td>
</tr>
<tr>
<td>Doka beam H20 eco N 4.50m</td>
<td>46.7</td>
</tr>
<tr>
<td>Doka beam H20 eco N 4.90m</td>
<td>50.7</td>
</tr>
<tr>
<td>Doka beam H20 eco N 5.90m</td>
<td>61.1</td>
</tr>
<tr>
<td>Doka beam H20 eco Nm</td>
<td>10.4</td>
</tr>
<tr>
<td>Doka beam H20 eco Nm BS</td>
<td>10.4</td>
</tr>
<tr>
<td>Alu box beam 8'-0"</td>
<td>41.7</td>
</tr>
<tr>
<td>Alu box beam 12'-0"</td>
<td>61.5</td>
</tr>
<tr>
<td>Alu box beam 16'-0"</td>
<td>67.9</td>
</tr>
<tr>
<td>Alu box beam 18'-0"</td>
<td>92.2</td>
</tr>
<tr>
<td>Article #</td>
<td>[lbs]</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>Doka floor prop Eurex 30 250</td>
<td>28.2</td>
</tr>
<tr>
<td>Length: 4'-10" - 8'-2" (148 - 250 cm)</td>
<td></td>
</tr>
<tr>
<td>Doka floor prop Eurex 30 300</td>
<td>36.2</td>
</tr>
<tr>
<td>Length: 5'-8" - 9'-10" (173 - 300 cm)</td>
<td></td>
</tr>
<tr>
<td>Doka floor prop Eurex 30 top 350</td>
<td>45.6</td>
</tr>
<tr>
<td>Length: 6'-6" - 11'-6" (198 - 350 cm)</td>
<td></td>
</tr>
<tr>
<td>Doka floor prop Eurex 30 top 400</td>
<td>54.2</td>
</tr>
<tr>
<td>Length: 7'-4" - 13'-1" (223 - 400 cm)</td>
<td></td>
</tr>
<tr>
<td>Doka floor prop Eurex 30 top 450</td>
<td>64.2</td>
</tr>
<tr>
<td>Length: 8'-2" - 14'-9" (248 - 450 cm)</td>
<td></td>
</tr>
<tr>
<td>Doka-Deckenstütze Eurex 30 top</td>
<td></td>
</tr>
<tr>
<td>Galvanized</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Article #</th>
<th>[lbs]</th>
<th>Article #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spindelstrebe T7</td>
<td>76.3</td>
<td>586090000</td>
</tr>
<tr>
<td>Doka-Deckenstütze Eurex 20 550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length: 9'-9" - 18'-1" (297 - 550 cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[lbs]</td>
<td>Article #</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 2'-6"</td>
<td>34.2 581601000</td>
<td></td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 3'-0"</td>
<td>39.7 581621000</td>
<td></td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 4'-0"</td>
<td>53.8 581602000</td>
<td></td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 5'-0"</td>
<td>67.7 581617000</td>
<td></td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 6'-0"</td>
<td>82.2 581603000</td>
<td></td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 7'-0"</td>
<td>92.6 581616000</td>
<td></td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 8'-0"</td>
<td>109.0 581604000</td>
<td></td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 9'-0"</td>
<td>134.0 581605000</td>
<td></td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 10'-0"</td>
<td>164.0 581606000</td>
<td></td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 11'-0"</td>
<td>192.0 581607000</td>
<td></td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 12'-0"</td>
<td>218.0 581608000</td>
<td></td>
</tr>
</tbody>
</table>

Painted blue

<table>
<thead>
<tr>
<th>[lbs]</th>
<th>Article #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-purpose waling WS10 Top50 0.50m</td>
<td>22.5 580001000</td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 0.75m</td>
<td>32.8 580002000</td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 1.00m</td>
<td>43.2 580003000</td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 1.25m</td>
<td>54.5 580004000</td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 1.50m</td>
<td>65.5 580005000</td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 1.75m</td>
<td>77.2 580006000</td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 2.00m</td>
<td>85.8 580007000</td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 2.25m</td>
<td>97.4 580008000</td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 2.50m</td>
<td>107.0 580009000</td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 2.75m</td>
<td>119.0 580010000</td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 3.00m</td>
<td>133.0 580011000</td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 3.50m</td>
<td>151.0 580012000</td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 4.00m</td>
<td>175.0 580013000</td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 4.50m</td>
<td>196.0 580014000</td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 5.00m</td>
<td>225.0 580015000</td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 5.50m</td>
<td>248.0 580016000</td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 6.00m</td>
<td>260.0 580017000</td>
</tr>
</tbody>
</table>

Painted blue
Doka is one of the world leaders in developing, manufacturing and distributing formwork technology for use in all fields of the construction sector. With more than 160 sales and logistics facilities in over 70 countries, the Doka Group has a highly efficient distribution network which ensures that equipment and technical support are provided swiftly and professionally. An enterprise forming part of the Umdasch Group, the Doka Group employs a worldwide workforce of more than 6000.