The Formwork Experts.

Load-bearing tower Staxo 100
with brief design as per Eurocode

User Information
Instructions for assembly and use (Method statement)
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Introduction</td>
</tr>
<tr>
<td>4</td>
<td>Elementary safety warnings</td>
</tr>
<tr>
<td>7</td>
<td>Services</td>
</tr>
<tr>
<td>8</td>
<td>System description</td>
</tr>
<tr>
<td>10</td>
<td>System overview</td>
</tr>
<tr>
<td>12</td>
<td>The Staxo 100 frame in detail</td>
</tr>
<tr>
<td>15</td>
<td>Practical examples</td>
</tr>
<tr>
<td>17</td>
<td>Adapts to different ground plans, heights, floor shapes and loads</td>
</tr>
<tr>
<td>23</td>
<td>Linking towers / placing assembly-level planking between towers</td>
</tr>
<tr>
<td>25</td>
<td>Forming downstand beams</td>
</tr>
<tr>
<td>27</td>
<td>Assembly (overview)</td>
</tr>
<tr>
<td>29</td>
<td>Horizontal assembly</td>
</tr>
<tr>
<td>33</td>
<td>Assembling towers in the upright</td>
</tr>
<tr>
<td>33</td>
<td>Assembling towers in the upright with 'mounted-ahead' railings</td>
</tr>
<tr>
<td>39</td>
<td>Assembling towers in the upright with 'mounted-ahead' 1.20m frames</td>
</tr>
<tr>
<td>44</td>
<td>Assembling towers in the upright by forklift truck</td>
</tr>
<tr>
<td>46</td>
<td>Creating a workplace</td>
</tr>
<tr>
<td>47</td>
<td>Erection and dismantling of superstructure</td>
</tr>
<tr>
<td>49</td>
<td>Assembly</td>
</tr>
<tr>
<td>53</td>
<td>Dismantling</td>
</tr>
<tr>
<td>55</td>
<td>Repositioning</td>
</tr>
<tr>
<td>56</td>
<td>Repositioning using traveller units</td>
</tr>
<tr>
<td>58</td>
<td>Lifting by crane</td>
</tr>
<tr>
<td>60</td>
<td>Lifting by forklift truck</td>
</tr>
<tr>
<td>61</td>
<td>General</td>
</tr>
<tr>
<td>61</td>
<td>Anchoring on the structure</td>
</tr>
<tr>
<td>63</td>
<td>Back-stays/shoring supports for the load-bearing towers</td>
</tr>
<tr>
<td>68</td>
<td>Inclination adjustment</td>
</tr>
<tr>
<td>72</td>
<td>Adaptation to building layout</td>
</tr>
<tr>
<td>77</td>
<td>Secondary-beam stabilisers</td>
</tr>
<tr>
<td>78</td>
<td>Combining Staxo 100 with Staxo</td>
</tr>
<tr>
<td>79</td>
<td>Combining with Dokamatic tables</td>
</tr>
<tr>
<td>81</td>
<td>Steel primary beams</td>
</tr>
<tr>
<td>82</td>
<td>Intermediate level made up with multi-purpose walings</td>
</tr>
<tr>
<td>83</td>
<td>Transporting, stacking and storing</td>
</tr>
<tr>
<td>89</td>
<td>Removing and refitting the connection sleeve</td>
</tr>
<tr>
<td>90</td>
<td>Structural design</td>
</tr>
</tbody>
</table>

Component overview
Introduction

Elementary safety warnings

User target groups

- This booklet is aimed at all persons who will be working with the Doka product or system that it describes. It contains information on the standard design for setting up this system, and on correct, compliant utilisation of the system.
- All persons working with the product described herein must be familiar with the contents of this booklet and with all the safety instructions it contains.
- Persons who are incapable of reading and understanding this booklet, or who can do so only with difficulty, must be instructed and trained by the customer.
- The customer is to ensure that the information materials provided by Doka (e.g. User Information booklets, Instructions for Assembly and Use, Operating Instruction manuals, plans etc.) are up to date and available to all users, and that they have been made aware of them and have easy access to them at the usage location.
- In the relevant technical documentation and formwork utilisation plans, Doka shows the workplace safety precautions that are necessary in order to use the Doka products safely in the usage situations shown. In all cases, users are obliged to ensure compliance with national laws, standards and regulations throughout the entire project and to take appropriate additional or alternative workplace safety precautions where necessary.

Remarks on this booklet

- This document can be used as general Instructions for Assembly and Use (Method Statement) or be incorporated into site-specific Instructions for Assembly and Use (Method Statement).
- The graphics, animations and videos in this document or app sometimes depict partially assembled assemblies and may require additional safety equipment and/or measures to comply with safety regulations.
- The customer must ensure all applicable regulations are complied with, even if they are not shown or implied in the graphics, animations and videos provided.
- Individual sections contain further safety instructions and/or special warnings as applicable.

Planning

- Provide safe workplaces for those using the formwork (e.g. for when it is being erected/dismantled, modified or repositioned etc). It must be possible to get to and from these workplaces via safe access routes!
- If you are considering any deviation from the details and instructions given in this booklet, or any application which goes beyond those described in the booklet, then revised static calculations must be produced for checking, as well as supplementary assembly instructions.

Regulations; industrial safety

- All laws, Standards, industrial safety regulations and other safety rules applying to the utilisation of our products in the country and/or region in which you are operating must be observed at all times.
- If a person or object falls against, or into, the side-guard component and/or any of its accessories, the component affected may only continue in use after it has been inspected and passed by an expert.

Hazard assessment

- The customer is responsible for drawing up, documenting, implementing and continually updating a hazard assessment at every job-site.
- This booklet serves as the basis for the site-specific hazard assessment, and for the instructions given to users on how to prepare and utilise the system. It does not substitute for these, however.
Rules applying during all phases of the assignment

- The customer must ensure that this product is erected and dismantled, reset and generally used for its intended purpose in accordance with the applicable laws, standards and rules, under the direction and supervision of suitably skilled persons.

 These persons' mental and physical capacity must not in any way be impaired by alcohol, medicines or drugs.

- Doka products are technical working appliances which are intended for industrial / commercial use only, always in accordance with the respective Doka User Information booklets or other technical documentation authored by Doka.

- The stability and load-bearing capacity of all components and units must be ensured during all phases of the construction work!

- Do not step on or apply strain to cantilevers, closures, etc. until suitable measures to ensure their stability have been correctly implemented (e.g. by tie-backs).

- Strict attention to and compliance with the functional instructions, safety instructions and load specifications are required. Non-compliance can cause accidents and severe injury (risk of fatality) and considerable damage to property.

- Sources of fire in the vicinity of the formwork are prohibited. Heaters are permissible only when used correctly and situated a correspondingly safe distance from the formwork.

- Customer must give due consideration to any and all effects of the weather on the equipment and regards both its use and storage (e.g. slippery surfaces, risk of slipping, effects of the wind, etc.) and implement appropriate precautionary measures to secure the equipment and surrounding areas and to protect workers.

- All connections must be checked at regular intervals to ensure that they are secure and in full working order.

 In particular threaded connections and wedged connections have to be checked and retightened as necessary in accordance with activity on the jobsite and especially after out-of-the-ordinary occurrences (e.g. after a storm).

- It is strictly forbidden to weld Doka products – in particular anchoring/tying components, suspension components, connector components and castings etc. – or otherwise subject them to heating.

 Welding causes serious change in the microstructure of the materials from which these components are made. This leads to a dramatic drop in the failure load, representing a very great risk to safety.

 It is permissible to cut individual tie rods to length with metal cutting discs (introduction of heat at the end of the rod only), but it is important to ensure that flying sparks do not heat and thus damage other tie rods.

 The only articles which are allowed to be welded are those for which the Doka literature expressly points out that welding is permitted.

Assembly

- The equipment/system must be inspected by the customer before use, to ensure that it is in an acceptable condition. Steps must be taken to exclude components that are damaged, deformed, or weakened due to wear, corrosion or rot (e.g. fungal decay).

- Using our safety and formwork systems together with those of other manufacturers can create risks that may lead to injury and damage to property. This requires separate verification.

- The equipment/system must be assembled and erected in accordance with the applicable laws, standards and rules by trained customer personnel whilst maintaining any applicable safety inspections that may be required.

- It is not permitted to modify Doka products; such modifications constitute a safety risk.

Closing the formwork

- Doka products and systems must be set up so that all loads acting upon them are safely transferred!

Pouring

- Do not exceed the permitted fresh-concrete pressures. Over-high pouring rates overload the formwork, cause greater deflection and risk breakage.

Stripping the formwork

- Do not strip out the formwork until the concrete has reached sufficient strength and the person in charge has given the order for the formwork to be stripped out!

- When stripping out the formwork, never use the crane to break concrete cohesion. Use suitable tools such as timber wedges, special pry-bars or system features such as Framax stripping corners.

- When stripping out the formwork, do not endanger the stability of any part of the structure, or of any scaffolding, platforms or formwork that is still in place!
Transporting, stacking and storing

- Observe all country-specific regulations applying to the handling of formwork and scaffolding. For system formwork the Doka slinging means stated in this booklet must be used – this is a mandatory requirement.

 If the type of sling is not specified in this document, the customer must use slinging means that are suitable for the application envisaged and that comply with the regulations.

- When lifting, always make sure that the unit to be lifted and its individual parts can absorb the forces that occur.

- Remove loose parts or secure them so that they cannot slip out of position and drop.

- All components must be stored safely, following all the special Doka instructions given in the relevant sections of this document!

Maintenance

- Only original Doka components may be used as spare parts. Repairs may only be carried out by the manufacturer or authorised facilities.

Miscellaneous

The weights as stated are averages for new material; actual weights can differ, depending on material tolerances. Dirt accretions, moisture saturation, etc. can also affect weight.

We reserve the right to make alterations in the interests of technical progress.

Symbols used

The following symbols are used in this document:

DANGER
This is a notifier drawing attention to an extremely dangerous situation in which non-compliance with this notifier will lead to death or severe, irreversible injury.

WARNING
This is a notifier drawing attention to a dangerous situation in which non-compliance with this notifier can lead to death or severe, irreversible injury.

CAUTION
This is a notifier drawing attention to a dangerous situation in which non-compliance with this notifier can lead to slight, reversible injury.

NOTICE
This is a notifier drawing attention to a situation in which non-compliance with this notifier can lead to malfunctions or damage to property.

Instruction
Indicates that actions have to be performed by the user.

Sight-check
Indicates that you need to do a sight-check to make sure that necessary actions have been carried out.

Tip
Points out useful practical tips.

Reference
Cross-references other documents.
Services

Support in every stage of the project

- Project success assured by products and services from a single source.
- Competent support from planning through to assembly directly on site.

Project assistance from start to finish

Every single project is unique and calls for individualised solutions. When it comes to the forming operations, the Doka team can help you with its consulting, planning and ancillary services in the field, enabling you to carry out your project effectively, safely and reliably. Doka assists you with individual consulting services and customised training courses.

Efficient planning for a safe project sequence

Efficient formwork solutions can only be developed economically if there is an understanding of project requirements and construction processes. This understanding is the basis of Doka engineering services.

Optimise construction workflows with Doka

Doka offers special tools that help you in designing transparent processes. This is the way to speed up pouring processes, optimise inventories and create more efficient formwork planning processes.

Custom formwork and on-site assembly

To complement its system formwork range, Doka offers customised formwork units. And specially trained personnel assemble load-bearing towers and formwork on site.

Just-in-time availability

Formwork availability is a crucial factor in realising your project on time and on budget. The worldwide logistics network puts the necessary formwork quantities on site at the agreed time.

Rental and reconditioning service

The formwork material needed for any particular project can be rented from Doka’s high-performing rental park. Doka Reconditioning cleans and overhauls both client-owned equipment and Doka rental equipment.

High performance, in all stages of the project

Tender
- Engineering
 - Execution planning
 - Cycle planning
 - Structure modelling/3D-planning
 - Assembly drawings
 - Statics calculation
 - Concremote
- Consulting and training
 - Project processing on-site
 - Formwork instructor
 - Training & consulting
- Process optimisation
 - Concremote
 - myDoka
 - Planning software
 - Yard management
- Pre-assembly and assembly
 - Pre-assembly service
 - Pre-assembly on site service
- Logistics
 - Organisation of transport & freight
- Rental and reconditioning service
 - Rental service
 - Formwork returns
 - Reconditioning & service fixed rates

upbeat construction
digital services for higher productivity

From planning through to completion - with upbeat construction we’ll be moving construction forward and upping the beat for more productive building with all our digital services. Our digital portfolio covers the entire construction process and is being extended all the time. To find out more about our specially developed solutions go to doka.com/upbeatconstruction.
System description

Load-bearing tower Staxo 100 – the extra-high-capacity, fast load-bearing tower made of steel, with integral safety features

Staxo 100 comes with all the field-proven advantages of Staxo – meaning that it is robust, fast and versatile. On top of all this, Staxo 100 has been given an extensive package of built-in safety features, and its load capacity greatly increased.

Sturdy galvanised steel frames, in three different heights, are the basis of this high-speed, high-performance load-bearing tower system.

High load-bearing capacity, quick and easy assembly using integrated connectors, and great versatility - these are the outstanding characteristics of Staxo.

Wherever high loads occur, in either the building-construction or civil-engineering fields, this load-bearing tower is the ideal solution.

The high-performance load-bearing tower

- high capacity of up to 100 kN per leg
- with lightweight components (frames up to h=1.20 m can be manhandled)
- ergonomical: easy-to-handle parts

... speeds up work

- the small number of system components makes for easier handling and means that no time is wasted searching for parts
- the connector components are captively integrated into the frames and so cannot be lost
- no tools are needed for assembling the towers

... provides optimum safety

- high stability, due to its 1.52 m wide frames
- slip-proof ladders integrated in the frames
- suspension points for chest harness

... is flexible

- the inter-frame spacing can be varied (from 0.60 m to 3.00 m), for optimum utilisation of the frames’ load-bearing capacity. (From 1.00m, in 50 cm increments).
- different frame heights - 0.90 m, 1.20 m and 1.80 m
 - for rough height adjustment in 30 cm increments: 0.90, 1.20 and 1.80 m
- fine adjustment by means of screw-jack U-heads and feet
- can be used in conjunction with floor props and Dokaflex

... is economical

- The tower units are quick and easy to assemble:
 - either on their sides or in the upright
 - for tall towers, tower units can be pre-assembled on their sides, and then simply stacked by crane
 - scaffold planking units make it easy to erect and dismantle the tower and superstructure
- with special wheel units, complete tableforms can quickly be wheeled to their next location
- the Forklift shifting device TG makes the job of erecting, dismantling and transporting Doka load-bearing towers very much easier.
Areas of use

The Load-bearing tower Staxo is ideal:

▪ as falsework for use in bridge-building, where high loads occur and where great stability is called for in that horizontal forces such as wind loads have to be safely transferred
▪ in the building construction field, e.g. for administration buildings and multistorey car-park decks, where large-area tableform units reduce forming times
▪ in the industrial and power-station construction field, as a load-bearing tower for all manner of applications

Doka stair tower 250

The Doka stair tower 250 consists of 1.20m frames and a small number of lightweight aluminium stairway elements.
Quick to erect, the stair tower provides 'high-level' safety and lets the site crew get quickly to their workplaces.

Follow the directions in the ‘Doka stair tower 250’ User Information booklet!
System overview

Basic design concept

Load-bearing tower Staxo 100

The Staxo 100 system components

Head units (A)

<table>
<thead>
<tr>
<th>4-way screw-jack head</th>
<th>Screw jack U-head</th>
<th>Heavy-duty screw jack 70 top + Split nut B</th>
<th>U-head D</th>
</tr>
</thead>
</table>

Top height-adjustment spindle for load-bearing towers. For holding the superstructure and adjusting its height. Rotatable, but with no height adjustment.

May be used with either one or two Doka H20 beams.

The primary beams are fixed so that they cannot tip over.

Staxo 100 frame (B)

<table>
<thead>
<tr>
<th>Staxo 100 frame 1.80m</th>
<th>Staxo 100 frame 1.20m</th>
<th>Staxo 100 frame 0.90m</th>
</tr>
</thead>
</table>

Hot-dip galvanised steel frames. Connectors for upward stacking of the frames are captively integrated into each frame.

Diagonal crosses (C)

Drop-in steel-tube bracing crosses between the frames. Identified by:
- Embossed marking (G) e.g. 18.250
- 18 = frame height 1.80 m
- 250 = inter-frame spacing 250 cm
- Notched, colour-coded clips (H) (see table)

a ... inter-frame spacing = 60° / 100 / 150 / 175 / 200 / 250 / 300 cm
b ... frame width = 152 cm
* only for 1.20 and 0.90m frames

A Head unit
B Staxo 100 frame
C Diagonal cross
D Base unit
E Scaffold planking
For horizontal bracing of the frames, always use **Diagonal crosses 9.xxx**.

In levels in which scaffold planking units are mounted, horizontal bracing with diagonal crosses is no longer needed. This only applies, of course, if the scaffold planking units are left in place in this 'storey' until the very end of the assignment (assembly, pouring etc.)
The Staxo 100 frame in detail

Features of the Staxo 100 frames

The following features characterise the Staxo 100 frame and distinguish it from the former Staxo frame.

NOTICE

Only Staxo 100 frames fulfil the capacity ratings stated in this document!

A "Staxo 100" sticker
B Stamped-in type designation: 18, 12 or 9
C Arrow to make clear where 'top and bottom' are (arrow pointing up = frame is in correct position)
D Anchorage point for personal fall-arrest set

WARNING

The anchorage point must be at or above the minimum height required for the fall arrest to work.

Attachment point only for personal fall-arrest set. Do not crane lift on this point.

Connection to horizontal tube: allowed.

To ladder rungs: prohibited. To diagonal tube: prohibited.
Integral interconnection system

- The crane-handling-safe link between the frames uses a **captive locking spring** plus built-in safety bolt. It can be locked or released in an instant - **with no need for any tools**.

Mode of functioning for upward stacking

<table>
<thead>
<tr>
<th>Yellow locking spring pushed toward the outside = connection sleeve unfixed</th>
<th>Blue locking spring pushed toward the outside = frames linked in crane-handling-safe manner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E Connection sleeve
F Yellow locking spring
G Blue locking spring

Mode of functioning for fitting the base units

Yellow locking spring pushed toward the inside = connection sleeve fixed.

A Transition swivel coupler 48/76mm.
This type of link is not in conformity with DIN 4421 (DIN EN 74).
No loads may be introduced parallel to the Staxo tubes.
B Swivel coupler 48mm or Normal coupler 48mm

Safety catch

- tried-and-tested interconnection system (captive)
- secures the diagonal crosses
- two defined positions (closed – open)

Connecting the couplers

<table>
<thead>
<tr>
<th>Closed</th>
<th>Open</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a ... max. 16 cm (exception: where tubes are being connected for constructional design purposes)
b ... Diameter 48 mm
c ... Diameter 75 mm

Profile form

- low weight, yet high load-bearing capacity
- sturdy
System description

User Information Load-bearing tower Staxo 100

Profile seal

- prevents connection sleeve falling out
- protects against damage
- sliding contact surface for nuts

Vertical access system

- integrated ladder
- good gripping possibility for transport by hand

WARNING

Never climb up or down the outside of the tower! You risk falling and/or causing the tower to tip over!

➤ Only ever climb up the inside of the tower. When doing this, make sure that the scaffold planking units are in the correct positions (as intermediate landings)!
Practical examples

Tableforms and tower frames are both assembled from the same system components.

Tableform units

- For repetitive use, the load-bearing tower can be assembled into complete tableforms.

Combined with Dokaflex

For downstand beams, the load-bearing towers and beam-forming supports can be combined very effectively with Dokaflex.

Edge floor-beam

Tower frames

With a load-bearing capacity of up to 97 kN per leg, Staxo 100 is an extremely strong load-bearing tower system. It safely withstands horizontal forces such as wind loads. The wide frames make for high stability right from the word ‘go’. Close inter-frame spacing is possible, for transferring high loads.

The Universal dismantling tool makes it easier to turn the Split nut B - even when it is under higher loads.

A Load-bearing tower
B Dokaflex
C Beam forming support 20
D Handrail post T 1.80m (optionally with Toeboard holder T 1.80m), Edge protection system XP, Handrail clamp S or Handrail post 1.50m
E Lashing strap 5.00m
F Doka express anchor 16x125mm and Doka coil 16mm
Shoring load-bearing structures

For bridges, underpasses and industrial structures, the load-bearing towers also combine perfectly with Doka large-area formwork Top 50. Even complicated structures can be formed cost-effectively in this way, with standard parts used extensively.

Propping an arched bridge

Typical section - propping a superstructure formwork
Adapts to different ground plans, heights, floor shapes and loads

The different sizes of diagonal brace for each height of frame enable the frames to be spaced close together or further apart, depending on the load.

In this way, only as much material is used as is really needed.

<table>
<thead>
<tr>
<th>e.g. light loads – frames spaced further apart</th>
<th>e.g. heavy loads – frames spaced close together</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![e.g. adapting to irregular shaped layouts](98003-263-01) by using single legs
System description

User Information

Load-bearing tower Staxo 100

Height ranges and materials schedule

Frame-sizes up to 1.80 m

![Graphical representation of load-bearing tower Staxo 100](image)

Notice

- The minimum values h_{min} given in Table A are only applicable if the biggest possible frame is always used in the base section.
- The lowering distance of 6 cm is already allowed for in Table A!
- L$_{K}$ and L$_{F}$ are in accordance with the structural design. In some cases, the structural design will permit greater extension lengths - see Tables B and C in the section headed 'Height adjustment'.

Table A

<table>
<thead>
<tr>
<th>Variant 1</th>
<th>Variant 2</th>
<th>Variant 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>L$_{K}$ = max. 30 cm</td>
<td>L$_{K}$ = max. 45 cm</td>
<td>L$_{K}$ = max. 45 cm</td>
</tr>
<tr>
<td>L$_{F}$ = max. 30 cm</td>
<td>L$_{F}$ = max. 70 cm</td>
<td>L$_{F}$ = max. 130 cm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fixed height of frame F_h [m]</th>
<th>4-way screw-jack head, Screw jack U-head or Heavy-duty screw jack 70 top</th>
<th>4-way screw-jack head, Screw jack U-head or Heavy-duty screw jack 70 top</th>
<th>4-way screw-jack head, Screw jack U-head or Heavy-duty screw jack 70 top</th>
</tr>
</thead>
<tbody>
<tr>
<td>h [m] min. - max.</td>
</tr>
<tr>
<td>1.20</td>
<td>1.75 - 1.80</td>
<td>2.06 - 2.35</td>
<td>2.78 - 2.95</td>
</tr>
<tr>
<td>1.80</td>
<td>2.02 - 2.40</td>
<td>2.06 - 2.95</td>
<td>2.78 - 3.55</td>
</tr>
<tr>
<td>1.80</td>
<td>2.20 - 2.40</td>
<td>2.52 - 3.25</td>
<td>3.24 - 3.85</td>
</tr>
<tr>
<td>2.10</td>
<td>2.52 - 2.70</td>
<td>2.82 - 3.55</td>
<td>3.54 - 4.15</td>
</tr>
<tr>
<td>2.40</td>
<td>2.62 - 3.00</td>
<td>2.82 - 3.30</td>
<td>3.24 - 4.15</td>
</tr>
<tr>
<td>2.70</td>
<td>2.92 - 3.30</td>
<td>2.92 - 3.85</td>
<td>3.54 - 4.15</td>
</tr>
<tr>
<td>3.00</td>
<td>3.22 - 3.60</td>
<td>3.22 - 4.15</td>
<td>3.54 - 4.15</td>
</tr>
<tr>
<td>3.30</td>
<td>3.52 - 3.80</td>
<td>3.52 - 4.45</td>
<td>4.44 - 5.05</td>
</tr>
<tr>
<td>3.60</td>
<td>3.82 - 4.20</td>
<td>3.82 - 4.75</td>
<td>4.44 - 5.15</td>
</tr>
<tr>
<td>3.90</td>
<td>4.12 - 4.50</td>
<td>4.12 - 5.05</td>
<td>4.44 - 5.65</td>
</tr>
<tr>
<td>4.20</td>
<td>4.42 - 4.80</td>
<td>4.42 - 5.35</td>
<td>4.74 - 5.95</td>
</tr>
<tr>
<td>4.50</td>
<td>4.72 - 5.10</td>
<td>4.72 - 5.65</td>
<td>5.04 - 6.25</td>
</tr>
<tr>
<td>4.80</td>
<td>5.02 - 5.40</td>
<td>5.02 - 5.95</td>
<td>5.34 - 6.55</td>
</tr>
<tr>
<td>5.10</td>
<td>5.32 - 5.70</td>
<td>5.32 - 6.25</td>
<td>5.64 - 7.05</td>
</tr>
<tr>
<td>5.40</td>
<td>5.62 - 6.00</td>
<td>5.62 - 6.55</td>
<td>5.94 - 7.15</td>
</tr>
<tr>
<td>5.70</td>
<td>5.92 - 6.30</td>
<td>5.92 - 6.85</td>
<td>6.24 - 7.45</td>
</tr>
<tr>
<td>6.00</td>
<td>6.22 - 6.60</td>
<td>6.22 - 7.15</td>
<td>6.54 - 7.75</td>
</tr>
<tr>
<td>6.30</td>
<td>6.52 - 6.90</td>
<td>6.52 - 7.45</td>
<td>6.84 - 8.05</td>
</tr>
<tr>
<td>6.60</td>
<td>6.82 - 7.20</td>
<td>6.82 - 7.75</td>
<td>7.14 - 8.35</td>
</tr>
<tr>
<td>6.90</td>
<td>7.12 - 7.50</td>
<td>7.12 - 8.05</td>
<td>7.44 - 8.65</td>
</tr>
<tr>
<td>7.20</td>
<td>7.42 - 7.80</td>
<td>7.42 - 8.35</td>
<td>7.74 - 8.95</td>
</tr>
<tr>
<td>7.50</td>
<td>7.72 - 8.10</td>
<td>7.72 - 8.65</td>
<td>8.04 - 9.25</td>
</tr>
<tr>
<td>7.80</td>
<td>8.02 - 8.40</td>
<td>8.02 - 8.95</td>
<td>8.34 - 9.55</td>
</tr>
<tr>
<td>8.10</td>
<td>8.32 - 8.70</td>
<td>8.32 - 9.12</td>
<td>8.64 - 9.85</td>
</tr>
<tr>
<td>8.40</td>
<td>8.62 - 9.00</td>
<td>8.62 - 9.55</td>
<td>8.94 - 10.15</td>
</tr>
<tr>
<td>9.00</td>
<td>9.22 - 9.60</td>
<td>9.22 - 10.15</td>
<td>9.54 - 10.75</td>
</tr>
<tr>
<td>9.30</td>
<td>9.52 - 9.90</td>
<td>9.52 - 10.45</td>
<td>9.84 - 11.05</td>
</tr>
</tbody>
</table>

Choose the right diagonal crosses for the distance between the frames.

The schedule of materials does not include scaffold planking units.

The scaffold planking units have to be planned separately for each set-up configuration. Provided they are located in the same level, they replace the Diagonal crosses 9.xxx needed for horizontal bracing. This reduction in the number of diagonal crosses needed must be allowed for in the schedule of materials.

18 999804302 - 07/2020
Frame-sizes up to 1.20 m

1.20m and 0.90m frames are possible here.

NOTICE

- The minimum values h_{min} given in Table A are only applicable if the biggest possible frame is always used in the base section.
- The lowering distance of 6 cm is already allowed for in Table A!
- L_K and L_F are in accordance with the structural design. In some cases, the structural design will permit greater extension lengths - see Tables B and C in the section headed 'Height adjustment'.
- Greater extension lengths are possible (up to max. 45 cm) if the head units and/or base units are given suitable scaffold-tube bracing.
- In principle, it is possible to use Heavy-duty screw jacks 70 and Heavy-duty screw jacks 70 top. However, when these are combined with the small frames, you must observe the limitations given in Tables B and C of the section headed 'Height adjustment'.

Table A

<table>
<thead>
<tr>
<th>$h_\text{[m]}$</th>
<th>$L_K = \text{max. 30 cm}$</th>
<th>$L_F = \text{max. 30 cm}$</th>
<th>Basic items</th>
</tr>
</thead>
<tbody>
<tr>
<td>h [m]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.20</td>
<td>1.75 - 1.80</td>
<td>4 4</td>
<td>Fh [m]</td>
</tr>
<tr>
<td>1.80</td>
<td>2.18 - 2.40</td>
<td>4 4</td>
<td>4-way screw-jack head or Screw jack U-head</td>
</tr>
<tr>
<td>2.10</td>
<td>2.32 - 2.70</td>
<td>4 4</td>
<td>Screw-jack foot</td>
</tr>
<tr>
<td>2.40</td>
<td>2.62 - 3.00</td>
<td>4 4</td>
<td>Staxo 100 frame 0.90m</td>
</tr>
<tr>
<td>2.70</td>
<td>3.10 - 3.30</td>
<td>4 4</td>
<td>Staxo 100 frame 1.20m</td>
</tr>
<tr>
<td>3.00</td>
<td>3.22 - 3.60</td>
<td>4 4</td>
<td>Staxo 100 frame 1.20m</td>
</tr>
<tr>
<td>3.30</td>
<td>3.52 - 3.90</td>
<td>4 4</td>
<td>Diagonal cross 9.xxx</td>
</tr>
<tr>
<td>3.60</td>
<td>3.82 - 4.20</td>
<td>4 4</td>
<td>Diagonal cross 12.xxx</td>
</tr>
<tr>
<td>3.90</td>
<td>4.12 - 4.50</td>
<td>4 4</td>
<td></td>
</tr>
<tr>
<td>4.20</td>
<td>4.42 - 4.80</td>
<td>4 4</td>
<td></td>
</tr>
<tr>
<td>4.50</td>
<td>4.72 - 5.10</td>
<td>4 4</td>
<td></td>
</tr>
</tbody>
</table>
Frame-sizes up to 1.20 m (with 0.90 m frames in the top and bottom 'storeys')

1.20m and 0.90m frames are possible here.

NOTICE

- The minimum values given in the table can only be obtained if the integrated connection sleeve is removed from the frame.

- The lowering distance of 6 cm is already allowed for in Table A!

- \(L_k \) and \(L_f \) are in accordance with the structural design. In some cases, the structural design will permit greater extension lengths - see Tables B and C in the section headed 'Height adjustment'.

- In the top and bottom 'storeys', 0.90m frames MUST be used.

- Greater extension lengths are possible (up to max. 40 cm) if the head units and/or base units are given suitable scaffold-tube bracing.

- In principle, it is possible to use Heavy-duty screw jacks 70 and Heavy-duty screw jacks 70 top. However, when these are combined with the small frames, you must observe the limitations given in Tables B and C of the section headed 'Height adjustment'.

Table A

<table>
<thead>
<tr>
<th>(h) [m] min. - max.</th>
<th>(4)-way screw-jack head or Screw jack U-head</th>
<th>(4)-way screw-jack foot</th>
<th>(4)-way screw-jack head or Screw jack U-head</th>
<th>(4)-way screw-jack foot</th>
<th>(4)-way screw-jack head or Screw jack U-head</th>
<th>(4)-way screw-jack foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.80</td>
<td>2.18 - 2.30</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>2.70</td>
<td>3.08 - 3.20</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3.00</td>
<td>3.38 - 3.50</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3.60</td>
<td>3.98 - 4.10</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3.90</td>
<td>4.28 - 4.40</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>4.20</td>
<td>4.58 - 4.70</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>4.50</td>
<td>4.88 - 5.00</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>4.80</td>
<td>5.18 - 5.30</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>5.10</td>
<td>5.48 - 5.60</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>5.40</td>
<td>5.78 - 5.90</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>5.70</td>
<td>6.08 - 6.20</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>6.00</td>
<td>6.38 - 6.50</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>6.30</td>
<td>6.52 - 6.80</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>6.60</td>
<td>6.82 - 7.10</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>6.90</td>
<td>7.12 - 7.40</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>7.20</td>
<td>7.42 - 7.70</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>7.50</td>
<td>7.72 - 8.00</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>7.80</td>
<td>8.02 - 8.30</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>8.10</td>
<td>8.32 - 8.60</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>8.40</td>
<td>8.62 - 8.90</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>8.70</td>
<td>8.92 - 9.20</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>9.00</td>
<td>9.22 - 9.50</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>9.30</td>
<td>9.52 - 9.80</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Choose the right diagonal crosses for the distance between the frames.

The schedule of materials does not include scaffold planking units.

The scaffold planking units have to be planned separately for each set-up configuration. Provided they are located in the same level, they replace the Diagonal crosses 9.xxx needed for horizontal bracing. This reduction in the number of diagonal crosses needed must be allowed for in the schedule of materials.
Height adjustment

- The 3 different heights of frame 0.90 m, 1.20 m and 1.80 m enable coarse adjustment to within 30 cm.
- Fine adjustment, down to the last millimetre, is done using the various head and base units.

System dimensions

on multi-storey towers

Regarding Table A ‘Height ranges and materials schedule’, use the version of this table given in the chapter for the usage situation concerned.

Table B: Head zone

<table>
<thead>
<tr>
<th>Screw jack U-head and 4-way screw-jack head</th>
<th>Heavy-duty screw jack 70 top</th>
<th>U-head D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frames in the top ‘storey’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.80 / 1.20 / 0.90m</td>
<td>1.80m</td>
<td>1.20m</td>
</tr>
<tr>
<td></td>
<td>0.90m</td>
<td>1.80 / 1.20 / 0.90m</td>
</tr>
<tr>
<td>(L_K) max.</td>
<td>45.8</td>
<td>71.2</td>
</tr>
<tr>
<td></td>
<td>71.2</td>
<td>71.2</td>
</tr>
<tr>
<td></td>
<td>71.2</td>
<td>1.6</td>
</tr>
<tr>
<td>(L_K) min.</td>
<td>7.8</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>8.4</td>
<td>24.9</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td></td>
</tr>
</tbody>
</table>

Values in cm
Min. values with no formwork-striking play

Table C: Base zone

<table>
<thead>
<tr>
<th>Screw-jack foot</th>
<th>Heavy-duty screw jack 70 + Split nut B</th>
<th>Heavy-duty screw jack 130 + Split nut B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frames in the base ‘storey’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.80m</td>
<td>1.20m</td>
<td>0.90m</td>
</tr>
<tr>
<td>(L_F) max.</td>
<td>46.2</td>
<td>46.2</td>
</tr>
<tr>
<td></td>
<td>46.2</td>
<td>71.2</td>
</tr>
<tr>
<td>(L_F) min.</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>26.3</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>8.8</td>
<td>28.2</td>
</tr>
<tr>
<td></td>
<td>58.1</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td>40.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Values in cm
Min. values with no formwork-striking play

NOTICE

The structural design of the load-bearing tower may make it necessary to plan for shorter extension lengths. See the section headed ‘Structural design’ for dimensioning details.
on single-storey towers

Note:
For towers consisting of one 'storey' only, the min. values L_K and L_F given in Tables B and C for the screwjack head and base units respectively will often not be reached.

Reason: The lengths of the screwjack head and base units and the integrated connector in the frame add up to a larger dimension than the height of the frame. These constraint points have already been allowed for in the operational height data given in Table A.

Close-up: Cut-away view of frame tube

![Diagram of frame tube]

<table>
<thead>
<tr>
<th>Connector</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>30.5</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Screw jack foot</td>
<td>--</td>
<td>69.2</td>
<td>--</td>
</tr>
<tr>
<td>Heavy duty screw jack 70</td>
<td>--</td>
<td>101.2</td>
<td></td>
</tr>
<tr>
<td>Heavy duty screw jack 130</td>
<td>--</td>
<td>173.0</td>
<td></td>
</tr>
<tr>
<td>Screw jack U-head</td>
<td>--</td>
<td>--</td>
<td>68.8</td>
</tr>
<tr>
<td>4-way screw-jack head</td>
<td>--</td>
<td>--</td>
<td>68.8</td>
</tr>
<tr>
<td>Heavy duty screw jack 70 top</td>
<td>--</td>
<td>--</td>
<td>100.9</td>
</tr>
<tr>
<td>U-head D</td>
<td>--</td>
<td>--</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Connector 30.5 -- --
Screw jack foot -- 69.2 --
Heavy duty screw jack 70 -- 101.2 --
Heavy duty screw jack 130 -- 173.0 --
Screw jack U-head -- -- 68.8
4-way screw-jack head -- -- 68.8
Heavy duty screw jack 70 top -- -- 100.9
U-head D -- -- 10.0

V Connector
Linking towers / placing assembly-level planking between towers

NOTICE
During all operations, ensure that only approved/trained personnel are allowed anywhere near the area where assembly/dismantling is being carried out. Danger from falling objects. Mark or cordon off the area concerned.

Staxo 100 planking struts 1.00m and 1.50m can be used – together with scaffold planking units – to create workspaces, access routes or stiffening between Staxo 100 towers.

- No requirement for scaffold tubes and loose couplers to make links in the frame plane
- Can be used as guard rails in the frame plane
- Can be used as links and, if statically necessary, as bracing between the towers
- Towers are always kept the same distance apart

Close-up showing how the Staxo 100 planking strut is fixed to the Staxo 100 frame-joint to make an assembly level

Permitted influence width 'e' [cm]

<table>
<thead>
<tr>
<th>Service load</th>
<th>1.5 kN/m²</th>
<th>0.75 kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staxo 100 planking strut 1.00m</td>
<td>300</td>
<td>—</td>
</tr>
<tr>
<td>Staxo 100 planking strut 1.50m</td>
<td>225</td>
<td>300</td>
</tr>
</tbody>
</table>

Note:
There is a height mismatch between the scaffold planking units placed on Staxo 100 planking struts and those placed on the Staxo 100 frames.

Width-across flats 22 mm

Permitted influence width 'e' [cm]

- a ... 16 cm
- b ... 152.4 cm
- c₁ ... 97.6 cm with Staxo 100 planking strut 1.00m
- c₂ ... 147.6 cm with Staxo 100 planking strut 1.50m
- d₁ ... 250.0 cm with Staxo 100 planking strut 1.00m
- d₂ ... 300.0 cm with Staxo 100 planking strut 1.50m
- e ... permitted influence (see Table)
Practical examples

Linking towers

Placing scaffold planking between towers

Erecting guard rails in frame plane

Note:
In the bracing-strut plane, guard rails may be erected using scaffold tubes 48.3mm and Transition swivel couplers 48/76mm.

A Staxo 100 planking strut 1.00m
B Staxo 100 planking strut 1.50m
C Scaffold planking
D Diagonal cross (where statically required)
E Scaffold tube 48.3mm
F Transition swivel coupler 48/76mm
Forming downstand beams

The Staxo 100 spindle adapter has been specially designed for use in forming downstand beams.

▪ Can be mounted onto both types of Multi-purpose waling: WS10 and WU12.
▪ Because they are fixed onto multi-purpose walings (whose length can be selected), a variable adjusting range is possible.
▪ Allows exact lining-and-levelling.
▪ No doubling-up required.

Practical example

Mounting the Staxo 100 spindle adapter

Example on Multi-purpose waling WU12 Top50

➤ Insert the Staxo 100 spindle adapter into the waling-gap of the Multi-purpose waling WU12.

NOTICE
➤ Do not oil or grease wedged connections.
➤ Move it to the desired position and firmly fix it with the wedge.
Next, fit on a 4-way screw-jack head.

Animation: https://player.vimeo.com/video/278154867

Installation of the scaffold tubes.

- Bracing in the direction transverse to the multi-purpose waling
- Alternative bracing when screw-jack U-head not restrained
Assembly (overview)

Set-up configurations

Load-bearing tower Staxo 100

Horizontal assembly
Standard set-up

Assembling in the upright

with Fork lift shifting device TG

by hand

'Mounted-ahead' railings

'Mounted-ahead' 1.20m frames and diagonals

98003-213-01

98003-211-01

98003-101

98003-293-01

98003-294-01
Fall protection when erecting, modifying or dismantling the load-bearing tower

If required by local regulations or as the result of a hazard assessment performed by the scaffold erector, when erecting, modifying or dismantling the load-bearing tower it may be necessary to use a personal fall-arrest system, 'mounted-ahead' frames and/or railings, or a combination of both.

NOTICE
Use only the anchorage points as shown in the section headed 'The Staxo 100 frame in detail'!

WARNING
➤ Make sure that the anchorage point is at or above the required minimum height, as otherwise there will not be sufficient room to arrest a fall.
Preliminary remark:
- The terms 'vertical' and 'horizontal' (e.g. referring to the diagonal crosses) are always used here with reference to their installation situation in the finished, upright tower.
- The job of erecting the load-bearing tower begins with the bottom (i.e. first) 'storey'.
- Arrow on frame must be pointing upwards. (= yellow locking spring at bottom)

NOTICE
General remarks:
- Slide the diagonal cross onto the safety-catch bolt and immediately secure it with the safety catch.

NOTICE
When erecting the tower, make sure that the climbing rungs are in the correct position relative to the tower.

Erecting the first storey
- Having regard to the instructions given above, place the tower frames on their sides on timber supports (min. 4cm high).

Bracing the frames in the vertical
- Link the frames with diagonal crosses.
Plan-bracing the frames (in the horizontal)

Basic rule:

- Maintaining correct geometry by fixing a horizontal diagonal cross in the 1st and last-but-one or last 'storey', and every 10 m. Additionally as required e.g.
 - if there is a horizontal restraint for the tower (even a temporary one)
 - if local loads need to be transferred (e.g. from attaching the tower to the crane after it has been ground-assembled in the horizontal)
For detailed design-load information, see the type test.

➤ Slot diagonal crosses onto the safety-catch bolts of the horizontal frame tubes, and fix them in place.

➤ Press the yellow locking springs on the frame inwards (to open) – the connection sleeves can now be moved freely.

➤ Push in and secure the base units. See the section headed 'Lifting by crane'.

Erecting further storeys

Note:

Do not pre-assemble units any higher than 10 m.

➤ Lock the connection sleeves on the frames that you are about to add, by pressing the yellow locking springs towards the outside.

➤ Place this frame onto the finished section and push the blue locking spring of the bottom frame outward (to join the frames).

➤ Fit and secure diagonal crosses in the same way as in the first 'storey'.

➤ Install scaffold planking units where required.
Close the anti-liftout guard.

Fitting scaffold planking units in the topmost or the next storey down, makes it easier to complete assembly work on the tower-frame superstructure.

Lifting into the upright by crane

▶ Check before attaching the lifting chain:

- All the locking springs must be closed = pushed outwards (to link the frames).
- All safety catches must be closed.
- All base units must be secured.

NOTICE
Max. extension length of the base units when the tower is being lifted into the upright: 35 cm!

Lifting into the upright

NOTICE
- Erect the load-bearing tower in the vertical on ground that is statically capable of supporting the load.
- If the load-bearing tower is over 6 m high, brace it or combine it with other towers.

▶ Attach the crane suspension tackle to the frames of the top section and lift the entire tower into the upright.

When the tower is standing in the upright, check once again to make sure that all the safety catches are closed.

For lifting the tower into the upright, make sure that the crane suspension tackle can be detached safely by helpers positioned on the neighbouring towers or adjoining slabs.
Detaching the crane suspension tackle near ground level:

This method must not be used for placing the tower back on its side!

Items needed:
- 3 x Scaffolding tube 48.3mm (G)
 - Minimum length: Inter-frame space + 1.00 m
- 6 x normal or swivel couplers, 48mm (H)

Attach scaffold tubes:
- one between the bottom frames
- two between the top frames

Attach two cables, chains or lifting straps to the bottom scaffold tube.

Lead the cables, chains or lifting straps along the outside of the tower and between the top scaffold tubes.

After the tower has been lifted into the upright, the cables, chains or lifting straps are detached by a crewman working from ground level.

Dismantling

After the tower has been placed back on its side, it can be dismantled in reverse order.

NOTICE
As early as in the planning phase, consideration should also be given to the dismantling operations (e.g. travelling/towing the load-bearing tower/unit into the reach of the crane for safe repositioning or for horizontal on-ground dismantling)!
Assembling towers in the upright

Assembling towers in the upright with 'mounted-ahead' railings

NOTICE

▪ Erect the load-bearing tower in the vertical on ground that is statically capable of supporting the load.
▪ If the load-bearing tower is over 6 m high, back-stay it or combine it with other towers.

As a rule:
▪ Arrow on the frame must point up.
(= yellow locking spring down)

▪ Slide the diagonal cross onto the safety-catch bolt and immediately secure it with the safety catch.

Example with Heavy-duty screw jack 70 and 4-way screw-jack head.

NOTICE

When erecting the tower, make sure that the climbing rungs are in the correct position relative to the scaffold planking units.
Assembling towers in the upright

User Information

Erecting the first storey

➤ Place a Split nut B on the Heavy-duty screw jack 70, push the two halves together and secure it with the spring locking pin.

Make sure that the spring locking pin points downwards when it is secured.

➤ Press the yellow locking springs on the frame inwards (to open) – the connection sleeves can now be moved freely.

➤ Insert the Heavy duty screw jacks 70 into the frames.

➤ Link the frames with diagonal crosses.

![Diagram](98003-251-01)

A	Split nut B
B	Heavy duty screw jack 70
C	Spring locking pin
D	Frame
E	Yellow locking spring

Erecting the second storey

Fitting the 'mounted-ahead' railings

➤ Mount Staxo side railings above the diagonal crosses.

➤ Mount Staxo front railings above the Staxo 100 frames.

![Diagram](98003-250-01)

Close-up of how to hang into place

![Diagram](98003-250-02)
Mounting the scaffold planking units

➤ Place scaffold planking on the finished 'storey'.

Staxo 100 mounting gallows 40kg

The Staxo 100 mounting gallows 40kg makes it easier to put up and take down Doka load-bearing towers Staxo 100 when these are erected and dismantled in the upright.

Practical example

Permitted load-bearing capacity:
40 kg / Staxo 100 mounting gallows 40kg,
Staxo 100 attaching cable 40cm and
Staxo 100 hoisting cable 40kg 30m
Assembling towers in the upright

User Information Load-bearing tower Staxo 100

Stacking the frames

➤ Climb up onto the scaffold planking.
➤ Lock the connection sleeves on the frames that you are about to add, by pressing the yellow locking springs towards the outside.
➤ Place this frame onto the finished section and push the blue locking spring of the bottom frame outward (to join the frames).

![Frame assembly diagram](image)

Bracing the frames in the vertical

➤ Fit and secure diagonal crosses in the same way as in the first 'storey'.

![Bracing diagram](image)

Erecting the third 'storey'

Raising the 'mounted-ahead' railings

1) Push the Staxo front railings down into the stand-by position.
2) Move the Staxo side railings up one section ('storey').
3) Move the Staxo front railings up again.

![Railings diagram](image)

➤ Mount the assembly planking.
➤ Climb up onto the scaffold planking.
➤ Fix the frames as on the 2nd section.
Fit and secure diagonal crosses as on the second section.

Slot diagonal crosses onto the safety-catch bolts of the horizontal frame tubes, and fix them in place.

Horizontal bracing

To meet stringent safety requirements, the 'mounted-ahead' railings can be left in place on all levels ('storeys') with scaffold planking units.

Erecting further storeys

Add further frames in the same way as for the 3rd storey, and brace them in the vertical with diagonal crosses.

NOTICE
- If the load-bearing tower is over 6 m high, back-stay it or combine it with other towers.

Basic rule:
- Maintaining correct geometry by fixing a horizontal diagonal cross in the 1st and last-but-one or last 'storey', and every 10 m.
- Additionally as required e.g.
 - if there is a horizontal restraint for the tower (even a temporary one)
 - if local loads need to be transferred (e.g. from attaching the tower to the crane after it has been ground-assembled in the horizontal)

For detailed design-load information, see the type test.
Head zone

Fitting the head unit

➤ Press the blue locking springs of the top frames towards the inside (to open them).
➤ Insert the head unit.

Always place the primary beams (single or double formwork beams) centrally.
The screw jack U-heads can also be turned to an angle to keep single formwork beams centred.

Dismantling

After the tower has been placed back on its side, it can be dismantled in reverse order.

NOTICE
➤ When lifting and repositioning the entire tower unit (or pre-assembled sub-units) by crane: Follow the instructions in the section headed ‘Lifting by crane’!

Notices

WARNING
➤ Where formwork beams cantilever out a long way, secure them against accidental lift-out.

WARNING
Loads that are applied non-centrally can cause overloading of the system.
➤ Ensure that all loads are applied centrally!

NOTICE
➤ As early as in the planning phase, consideration should also be given to the dismantling operations (e.g. travelling/towing the load-bearing tower/unit into the reach of the crane for safe repositioning or for horizontal on-ground dismantling)!
Assembling towers in the upright with 'mounted-ahead' 1.20m frames

![Diagram of tower assembly]

NOTICE
- Erect the load-bearing tower in the vertical on ground that is statically capable of supporting the load.
- If the load-bearing tower is over 6 m high, back-stay it or combine it with other towers.

General remarks:
- Arrow on frame must be pointing upwards.
 (= yellow locking spring at bottom)
- Slide the diagonal cross onto the safety-catch bolt and immediately secure it with the safety catch.
- Make sure that the spring locking pin points downwards when it is secured.
- Press the yellow locking springs on the frame inwards (to open) – the connection sleeves can now be moved freely.
- Insert the Heavy duty screw jacks 70 into the frames.
- Link the frames with diagonal crosses.

Erecting the first storey

- Place a Split nut B on the Heavy-duty screw jack 70, push the two halves together and secure it with the spring locking pin.
- Press the yellow locking springs on the frame inwards (to open) – the connection sleeves can now be moved freely.
- Insert the Heavy duty screw jacks 70 into the frames.

*Diagram captions:
- A Split nut B
- B Heavy duty screw jack 70
- C Spring locking pin
- D Frame
- E Yellow locking spring
- F Diagonal cross

*Example:
- e.g. with Heavy duty screw jack 70 and 4-way screw-jack head.*
Assembling towers in the upright

User Information Load-bearing tower Staxo 100

Mounting the scaffold planking units

➤ Place scaffold planking onto the bottom level.

➤ Close the anti-liftout guard.

Erecting the second storey

Stacking the frames

➤ Lock the connection sleeves on the frames that you are about to add, by pressing the yellow locking springs towards the outside.

➤ Place this frame onto the finished section and push the blue locking spring of the bottom frame outward (to join the frames).

➤ Push diagonal crosses onto the bottom safety-catch bolts and secure them with the safety catches.

Bracing the frames in the vertical

➤ Raise the scaffold planking units to the next level.

➤ Push diagonal crosses onto the top safety-catch bolts and secure them with the safety catches.
Erecting the third 'storey'

Stacking the frames

➤ Add 1.20 m frames in the same way as for the 2nd section.
➤ Push diagonal crosses onto the bottom safety-catch bolts and secure them with the safety catches.

Mounting scaffold planking units and bracing the frames in the vertical

➤ Place scaffold planking on the finished 'storey'.
➤ Push diagonal crosses onto the top safety-catch bolts and secure them with the safety catches.

Horizontal bracing

NOTICE

If no scaffold planking units are used, or if these are removed before the tower is finally put into use, the following rule applies:

Basic rule:

▪ Maintaining correct geometry by fixing a horizontal diagonal cross in the 1st and last-but-one or last 'storey', and every 10 m. Additionally as required e.g.
 - if there is a horizontal restraint for the tower (even a temporary one)
 - if local loads need to be transferred (e.g. from attaching the tower to the crane after it has been ground-assembled in the horizontal)

For detailed design-load information, see the type test.

➤ Slot diagonal crosses onto the safety-catch bolts of the horizontal frame tubes, and fix them in place.
Erecting further storeys

➤ Add further frames in the same way as for the 3rd 'storey', and brace them in the vertical with diagonal crosses.

NOTICE

▪ Arrange the scaffold planking units either on alternate sides from one 'storey' to the next, or across the entire area.

▪ When the scaffold planking units are located on alternate sides, 3 scaffold planking units must be used on the final (i.e. top) 'storey', one of them with a manhole. Make sure that the manhole is in the correct position here.

▪ If the load-bearing tower is over 6 m high, back-stay it or combine it with other towers.
Head zone

Fitting the head unit

➤ Press the blue locking springs of the top frames towards the inside (to open them).
➤ Insert the head unit.

Always place the primary beams (single or double formwork beams) centrally.
The screw jack U-heads can also be turned to an angle to keep single formwork beams centred.

WARNING
➤ Where formwork beams cantilever out a long way, secure them against accidental lift-out.

WARNING
Loads that are applied non-centrally can cause overloading of the system.
➤ Ensure that all loads are applied centrally!

NOTICE
➤ When lifting and repositioning the entire tower unit (or pre-assembled sub-units) by crane: Follow the instructions in the section headed ‘Lifting by crane’!

Dismantling

After the tower has been placed back on its side, it can be dismantled in reverse order.

NOTICE
As early as in the planning phase, consideration should also be given to the dismantling operations (e.g. travelling/towing the load-bearing tower/unit into the reach of the crane for safe repositioning or for horizontal on-ground dismantling)!
Assembling towers in the upright by forklift truck

Fork lift shifting device TG

The Fork lift shifting device TG may only be used for erecting, dismantling and transporting Doka load-bearing towers Staxo, Staxo 40, Staxo 100, Staxo 100 eco, d2 and d3.

Follow the directions in the Operating Instructions!

Items needed:

<table>
<thead>
<tr>
<th>Item</th>
<th>Designation</th>
<th>Q'ty</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>Fork lift shifting device TG</td>
<td>1</td>
</tr>
<tr>
<td>(B)</td>
<td>Multi-purpose waling WS10 Top50 2.00m</td>
<td>2</td>
</tr>
<tr>
<td>(C)</td>
<td>Connecting pin 10cm</td>
<td>4</td>
</tr>
<tr>
<td>(D)</td>
<td>Spring cotter 5mm</td>
<td>4</td>
</tr>
<tr>
<td>(E)</td>
<td>Scaffold tube 48.3mm 1.00m</td>
<td>2</td>
</tr>
<tr>
<td>(F)</td>
<td>Screw-on coupler 48mm 50</td>
<td>4</td>
</tr>
<tr>
<td>(G)</td>
<td>Scaffold tube 48.3mm 2.00m</td>
<td>1</td>
</tr>
<tr>
<td>(H)</td>
<td>Swivel coupler 48mm</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Operating cord, site-provided (optional)</td>
<td>1</td>
</tr>
</tbody>
</table>

Max. load

<table>
<thead>
<tr>
<th>Max. load on forklift</th>
<th>Max. load on Fork lift shifting device with box-style fork extensions</th>
<th>Max. load on Fork lift shifting device with telescopic forks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000 kg</td>
<td>1000 kg</td>
<td>600 kg</td>
</tr>
<tr>
<td>2000 kg</td>
<td>600 kg</td>
<td>600 kg</td>
</tr>
</tbody>
</table>

Max. heights of load-bearing towers

Requirements for fork-lift trucks or telescoping stacker trucks

- Overhead guard for forklift operator
- Centre-to-centre distance of the fork prongs: 850 mm

WARNING

➤ While load-bearing towers are being erected or dismantled, lifted or lowered: It is forbidden to walk or stand beneath suspended loads.

Max. load on forklift

- 4000 kg: 1000 kg
- 2000 kg: 600 kg

Max. load on Fork lift shifting device

- 4000 kg: 600 kg
- 2000 kg: 600 kg

WARNING

➤ It is forbidden to use forklift or telescoping stacker trucks to erect/dismantle or transport load-bearing towers without a Fork lift shifting device TG.

➤ It is not permitted to use non-enclosed (open) fork extensions.

Permitted types of fork extension:
- box-style fork extensions 1)
- Telescopic fork prongs

Min. fork length:
- Distance between the frames of the load-bearing tower + 400 mm
- Max. fork width: 195 mm
- Max. fork height: 71 mm

1) Observe the following manufacturer’s data:
- Load-bearing capacity of the fork extension
- Required length of the fork prongs
Travelling the towerframe units

NOTICE

Very important points for the moving procedure:

- As well as the fork-lift driver, a specially trained watchman must also be on hand during all lifting, assembly and travelling operations.
- max. inclination of trackway: 2%.
- There must be a flat, firm (e.g. concrete) base that is capable of supporting the load.

Assembling the towerframe units

NOTICE

- For details of how to assemble and join together the individual 'towerframe storeys', see 'Assembling towers in the upright'!

➤ Build each storey at ground level.
➤ Use a forklift truck to stack the towerframe storeys into a single towerframe unit.

Dismantling

To dismantle, perform the above steps in reverse order.

NOTICE

Always only dismantle the bottom 'storey' of the towerframe unit.
Creating a workplace

Mount the toeboard

To create a safe workplace, toeboards must be fitted:
➤ Hook the Staxo 100 toeboards onto the safety-catch bolts.
➤ Fit site-provided planks.

To determine the right plank-length: Centre-to-centre distance between the frames, minus 10 cm
➤ Fix the planks with nails.

Optionally: Railings on the top 'storey'

To meet very stringent safety requirements, leading guard rails can be fitted in the top section.
This is done in line with the instructions given in 'Assembling towers in the upright with mounted-ahead railings'.

Mount the Staxo side railings, securing them with a Spring locked connecting pin 16mm to prevent accidental lift-out.

Mount Staxo front railings and secure them with a Spring cotter 5mm to prevent accidental lift-out.

Animation: https://player.vimeo.com/video/280480836
Erection and dismantling of superstructure

Planning aid

WARNING
Risk of tipping over!
If loads (primary beams, secondary beams, formwork sheets) are not centred, stability can be impaired!
➤ Always centre all loads.
➤ Make sure that the structure is sufficiently stable.

WARNING
Risk of falling at open edges!
➤ Personnel must be trained to use personal fall-arrest systems (e.g. the Doka personal fall-arrest set) until all fall protection has been installed.
➤ Suitable anchorage points must be defined by an approved person appointed by the contractor.

A fall arrester such as the FreeFalcon provides a mobile anchorage point for the Doka personal fall-arrest set.

Note:
Consider the loads from slab stop-ends. If the loads cannot be transferred directly, ensure all stop-end loads are designed and secured against pull out.

NOTICE
Take the following into account in planning:
- Because of manual handling in stripping out, the maximum weight of the primary beams should be < 50 kg!
 - For this reason, use Doka beams I tec 20, Alu box beams or Multi-purpose walings WS10 Top50 with a maximum length of 2.50 m.
 - This is particularly important at closure zones and in towers that cannot be moved out for dismantling.
- In the edge zone, secure or fasten all secondary beams to prevent overturning (use secondary beam stabilisers, Waling clamps H20, etc.).
- In principle, the secondary beams should rest on only 2 primary beams. In the closure zone, the secondary beams can rest on 3 primary beams (because of an additional single primary beam). Avoid long cantilevers, to minimise the risk of overturning.
- In the closure zone, it is advisable to use Timber formwork beams H20, Alu box beams or Doka beams I tec 20.
- The top 'storey' should be constructed with a Staxo frame 1.20m. This gives the working height for installation of the superstructure.
- Replace the topmost horizontal crosses with assembly planking.
- Underneath the topmost ‘storey’, construct an uninterrupted assembly level extending for the entire area to be formed. Whenever possible, compensate for differences in height due to different frame heights, or install clearly visible steps.
- At downstand beams use only 0.90m frames in the first ‘storey’ to facilitate stripping out, for example by forklift truck.
 - Remove the lowest frames.
 - Then move out the towers underneath the downstand beam.
- For a higher load-bearing capacity, use the smaller frames 0.90m or 1.20m in the lowest and highest ‘storeys’.
Preparations

Below are some general notes for safe use. For detailed descriptions of the erection procedure see the relevant sections of this User Information booklet and the 'Eurex 60 550' User Information booklet.

➤ Interconnect the towers (bracing for 6.00 m + towers).
➤ Tie-back towers and anchor them to the structure (bracing for 6.00 m + towers).
➤ Install assembly planking on the towers.
➤ Install an assembly level between the towers.
➤ Pre-install Insertion adapters XP on the appropriate edge primary beams for installation of railings.
➤ Pre-install Insertion adapters XP on the appropriate secondary beams for installation of railings.

![Diagram showing tower and Insertion adapter XP](image)

A Insertion adapter XP
Assembly

NOTICE
During all operations, ensure that only approved/trained personnel are allowed anywhere near the area where assembly/dismantling is being carried out. Danger from falling objects. Mark or cordon off the area concerned.

Assembling the superstructure

Installing the primary beams

Primary beams of Timber formwork beams H20, Doka beams I tec 20 or Alu box beams

➤ Attach packaged primary beams to the crane and crane-lift them to the usage location.
➤ Safely lower the primary beam package so that the load is centred on the cross profiles of the Staxo frames and detach the package from the crane.
➤ Manually position each primary beam in turn.

Primary beams with multi-purpose walings, steel profiles, etc.

➤ Attach each primary beam individually to the crane and crane-lift it to the usage location.
➤ Use the crane to lower the primary beam into position on the heads and detach it from the crane.
➤ If necessary, interconnect the primary beams (with formwork element connectors, plates, etc.)

Installation of the secondary beams (Doka beams H20)

WARNING
➤ Secure cantilevered slab formwork to prevent lift-out and overturning.
➤ Secondary beams with stop-end formwork must be secured against horizontal pull-out.
➤ Attach packaged secondary beams to the crane and crane-lift them to the usage location.
➤ Safely lower the secondary beam package so that the load is centred on the primary beams and detach the package from the crane.
➤ Working from the assembly level, manually position each secondary beam in turn at the specified spacing.
➤ Repeat these steps until all the secondary beams are in position over the full length of the formwork sheet.

Installation of the formwork sheets

➤ Attach packaged formwork sheets (max. 1300 kg) to the crane and crane-lift them to the usage location.
➤ Safely lower the formwork sheet package so that the load is centred on the secondary or primary beams and detach the package from the crane.
Erection and dismantling of superstructure

Manually position each formwork sheet in turn.

- Repeat this process until all the formwork sheets are in position.
- Only now is it permissible to step on to the formwork.

Installation of the railings

A fall arrester such as the FreeFalcon provides a mobile anchorage point for the Doka personal fall-arrest set.

- Install Handrail posts XP.
- Install protective gratings or guardrail boards for safety barriers.
- Only when all safety barriers are in place and secure is it permissible for personal fall-arrest systems to be removed.

Overturning protection of the secondary beams:
- Secondary-beam stabilisers (A)
- Seat the edge beams against the Insertion adapters XP. (B)

Where necessary (e.g. in edge zones), secure the formwork sheets with nails.

- Sheet thickness of 21 mm: approx. 50 mm
- Sheet thickness of 27 mm: approx. 60 mm

- Repeat this process until all the formwork sheets are in position.
- Only now is it permissible to step on to the formwork.

WARNING
Risk of falling at open edges!

- Personnel must be trained to use personal fall-arrest systems (e.g. the Doka personal fall-arrest set) until all fall protection has been installed.
- Suitable anchorage points must be defined by an approved person appointed by the contractor.
Installation of the closure zones

Mounting the floor props

Follow the directions in the 'Eurex 60 550', 'Eurex top 700' or 'Eurex 100 plus' User Information booklet, as applicable.

➤ Lay the floor props flat on the ground and set them to the correct extended length.
➤ Insert and secure each U-head or 4-way head.
➤ Lift each floor prop to the vertical and secure it so that it cannot fall over (e.g. with Removable folding tripod 1.20m)
➤ Use a service tower for all subsequent work steps.

Installing the primary beams

Primary beams of Timber formwork beams H20, Doka beams l tec 20 or Alu box beams

➤ Attach each primary beam individually to the crane and crane-lift it to the usage location.
➤ Working from the service tower, position the primary beam and detach the crane.

Primary beams with multi-purpose walings, steel profiles, etc.

➤ Attach each primary beam individually to the crane and crane-lift it to the usage location.
➤ Working from the service tower and using the crane, lower the primary beam into position on the heads and detach the crane.
➤ If necessary, interconnect the primary beams (with formwork element connectors, plates, etc.).

Installation of the secondary beams (Doka beams H20)

WARNING
➤ Secure cantilevered slab formwork to prevent lift-out and overturning.
➤ Secondary beams with stop-end formwork must be secured against horizontal pull-out.

➤ Attach packaged secondary beams to the crane and crane-lift them to the usage location.
➤ Safely lower the secondary beam package so that the load is centred on the primary beams and detach the package from the crane.
➤ Pre-install Insertion adapters XP on the appropriate secondary beams for installation of railings.
➤ Working from the assembly level, manually position each secondary beam in turn at the specified spacing.
➤ Repeat this process until all the secondary beams are in position.

Overturning protection of the secondary beams:

▪ Secondary-beam stabilisers (A)
▪ Seat the edge beams against the Insertion adapters XP. (B)

Where necessary (e.g. in edge zones), secure the formwork sheets with nails.

Recommended nail lengths

▪ Sheet thickness of 21 mm: approx. 50 mm
▪ Sheet thickness of 27 mm: approx. 60 mm

➤ Repeat this process until all the formwork sheets are in position.
➤ Only now is it permissible to step on to the closure zone.

When a fall arrester is used (e.g. FreeFalcon), it is also permissible to lay the formwork sheeting from above.

Follow the directions in the 'FreeFalcon' Operating Instructions!
Installation of the railings

WARNING
Risk of falling at open edges!
- Personnel must be trained to use personal fall-arrest systems (e.g. the Doka personal fall-arrest set) until all fall protection has been installed.
- Suitable anchorage points must be defined by an approved person appointed by the contractor.

- Pre-install the Handrail posts XP.
- Install protective gratings or guardrail boards for safety barriers.
- Only when all safety barriers are in place and secure is it permissible for personal fall-arrest systems to be removed.
Dismantling

WARNING
Risk of falling parts during dismantling!
- It is forbidden to enter, pass through or be in the danger zone underneath a suspended load.
- Secure all parts (e.g. with ropes, etc.) so that they cannot drop.
- All the work of dismantling the superstructure is carried out from the assembly level.

NOTICE
During all operations, ensure that only approved/trained personnel are allowed anywhere near the area where assembly/dismantling is being carried out. Danger from falling objects. Mark or cordon off the area concerned.

NOTICE
All steps must be carried out from the assembly level or a service tower (e.g. a scissor-type elevated work platform).

Removal of the railings
- Remove protective gratings or guardrail boards for safety barriers.
- Remove the Handrail posts XP.

A fall arrester such as the FreeFalcon provides a mobile anchorage point for the Doka personal fall-arrest set.

Follow the directions in the 'FreeFalcon' Operating Instructions!

Dismantling the closure zones
- Invariably, safe dismantling in the closure zone is carried out from a service tower (e.g. a scissor-type elevated work platform).
- For safe removal of the formwork components, depending on propping height use appropriate lifting equipment (scissor-type elevated work platform, forklift, etc.) and appropriate transport frames.
- Remove longitudinal connectors between the primary beams (e.g. plates).
- Uniformly lower the closure zone.
- Remove the fittings installed to secure the edge secondary beams (removal of secondary-beam stabilisers, Waling clamps H20, etc.).
- Turn each secondary beam onto its side and pull it out. Stack the beams in the transport frame and remove them from the work zone.
- Leave enough beams in position to secure the formwork sheets, e.g. the beams at the joints between the formwork sheets.
- Work each formwork sheet clear. Stack the sheets in the transport frame and remove them from the work zone.
- Remove the remaining secondary beams, stack them in the transport frame and remove them from the work zone.
- Remove the fittings installed to secure the primary beams.
- Manually remove each primary beam in turn. Stack the beams and remove them from the work zone.

WARNING
Risk of falling parts during dismantling!
- It is forbidden to enter, pass through or be in the danger zone underneath a suspended load.
- Secure all parts (e.g. with ropes, etc.) so that they cannot drop.
- All the work of dismantling the superstructure is carried out from the assembly level.

NOTICE
During all operations, ensure that only approved/trained personnel are allowed anywhere near the area where assembly/dismantling is being carried out. Danger from falling objects. Mark or cordon off the area concerned.
Dismantling the superstructure

- Safe dismantling of the superstructure is carried out from the assembly level in or between the Staxo towers.
- For safe removal of the formwork components, depending on propping height use appropriate lifting equipment (scissor-type elevated work platform, forklift, etc.) and appropriate transport frames.
- Remove longitudinal connectors between the primary beams (e.g. plates).
- All loose parts must be removed, e.g. on the assembly level.
- Uniformly lower the superstructure with screw jacks.
- Remove the fittings installed to secure the edge secondary beams (removal of secondary-beam stabilisers, Waling clamps H20, etc.).
- Turn each secondary beam onto its side and pull it out. Stack the beams in the transport frame and remove them from the work zone.
- Leave enough beams in position to secure the formwork sheets.
- Work each formwork sheet clear. Stack the sheets in the transport frame and remove them from the work zone.
- Remove the remaining secondary beams, stack them in the transport frame and remove them from the work zone.
- Remove the fittings installed to secure the primary beams.
- Manually remove each primary beam in turn. Stack the beams and remove them from the work zone.
- Remove the assembly planking between the Staxo towers.
- For instructions on repositioning and dismantling Staxo towers, see the sections headed 'Lifting by forklift truck' and 'Assembling towers in the upright with forklift truck'.

Universal dismantling tool

The 'Universal dismantling tool' makes it easier to undo nuts.

Possible uses

The contact surfaces are shown in blue in this graphic.

- **A** Screw jack foot
 - Adjustable plumbing strut
- **B** Split nut B
 - Spindle strut T
 - Plumbing strut 540
- **C** Doka floor prop Eurex 20 and Eurex 30
- **D** Eurex 60 550
 - Adjusting strut 120 and 220
 - Plumbing strut 340

Practical examples

<table>
<thead>
<tr>
<th>Screw-jack foot</th>
<th>Split nut B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Doka floor props Eurex 20 and Eurex 30</td>
<td>Eurex 60 550</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Repositioning

Different ways of repositioning

- Using traveller units
- By crane
- By forklift truck or telescoping stacker truck

With transport winches
With Shifting carriage TG

NOTICE
- The most suitable approach to repositioning and dismantling should already be discussed and agreed with the site in the project phase, especially for very tall towers.
- There are also other ways of repositioning the towers that are not shown in this User Information booklet. The customer (contractor) bears sole responsibility for use of all such methods and must prepare a separate risk assessment for any such intended method.
Repositioning using traveller units

Completely assembled tableforms can be wheeled to their next location, quickly and easily, using traveller units.

The following different types of wheel unit are available for this. The crane is only needed when the tower has to be lifted up to the next storey.

All types of wheel unit can perform the following functions:

- Lifting
- Wheeling
- Lining-and-levelling
- Lowering

Example with Winch 70:

Repositioning using traveller units

Traveller unit variants:

- Shifting carriage TG
- Modular system (with winches)

Notice

When repositioning load-bearing towers that include standard superstructures, remember:

Ratio b:h = max. 1:3, with 'b' being the narrowest side.

Custom constructions must be statically verified!

Modular system (with winches)

Optimum adaptability to on-site requirements.

There is a choice of 2 types of winch and 2 types of wheel.

Max. load:

- 1000 kg per Winch 70 (lifting height 70 cm) with solid-tyre wheel
- 1500 kg per Winch 125 (lifting height 125 cm) with Heavy-duty wheel 15 kN

Notice

- The floor must be stable, firm and sufficiently smooth (e.g. concrete).

Follow the directions in the 'Staxo/d2 winch' Operating Instructions!

- Clamp the winch to the frame of the load-bearing tower, using the Staxo/d2 adapter frame.
- Secure the foot-pieces to prevent them dropping out. See the section headed 'Lifting by crane'.

Equipment needed for one shifting unit

<table>
<thead>
<tr>
<th>Item</th>
<th>Designation</th>
<th>No. of items</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Winch 70 or 125</td>
<td>4</td>
</tr>
<tr>
<td>B</td>
<td>Staxo/d2 adapter frame</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>Solid-tyre wheel or Heavy-duty wheel 15kN</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>Double wheeled transporter</td>
<td>4</td>
</tr>
</tbody>
</table>
Accessory for transporting the winches when empty:

The **Double wheeled transporter** is bolted into the connecting sockets on the wheel flange and makes it easier to wheel the (empty) wheel-units.

Shifting carriage TG

This is an easy-to-operate, manual hydraulic lifting carriage for shifting light to medium-weight tableform units. As well as making the tableforms easier to move around, it also makes it easier to erect and strike the formwork.

- Hydraulic, for near-effortless lifting.
- Tables can be 'inched' down slowly with handle-control.
- 3 guide-rolls, for maximum manoeuvrability.
- With an overall width of only 82 cm, the carriage can pass easily through any doorway when empty.

Max. load per Shifting carriage TG 1000 kg

NOTICE

- The floor must be stable, firm and sufficiently smooth (e.g. concrete).
- Max. gradient of floor: 5 %.
- Max. configuration that can be transported using 2 Shifting carriages TG: Tables with 3 cross-frames per storey and a max. height of 5.0 m.

Follow the directions in the 'Shifting carriage TG' Operating Instructions!

- Push the Shifting carriage TG up against the narrow sides of the tableform – the slot-in lifting profile reaches under the bottom cross-tube of the frame.
- Secure the foot-pieces to prevent them dropping out. See the section headed 'Lifting by crane'.

Equipment needed for one shifting unit

<table>
<thead>
<tr>
<th>Item</th>
<th>Designation</th>
<th>N° of items</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Shifting carriage TG</td>
<td>2</td>
</tr>
</tbody>
</table>

A Shifting carriage TG
B Slot-in lifting profile
Lifting by crane

NOTICE
The max. height of towerframe unit that can be lifted in one piece is 20 m!

Where the tableforms are to be repositioned in the vertical, i.e. crane-lifted, they must be fitted with a **Lifting rod 15.0** and **Retaining plate 15.0**, which make it easy to attach the transfer cables.

Max. load:
1000 kg per Lifting rod 15.0 - where the load is applied centrally

Assembly

➤ Mount the Lifting rod 15.0 and Retaining plate 15.0.

Preparation

➤ Connect superstructure components together

➤ e.g. connect the primary and secondary beams to rafter plates, and nail on the form-ply.

Connect the superstructure to the head units

➤ e.g. with Locking rod 15.0, Clamping plate and Wing nut 15.0.

Secure the base units to prevent them dropping out

➤ Slot the fixing handle into the cross-tube of the frame.

Secure the head units so that they cannot be lifted out

➤ Slot the fixing handle into the cross-tube of the frame.

NOTICE
The max. height of towerframe unit that can be lifted in one piece is 20 m!

Max. load:
1000 kg per Lifting rod 15.0 - where the load is applied centrally

WARNING
Danger from loose and unsecured parts.
➤ Observe the following points before lifting!

Use a 20 mm diam. bit to drill the hole through the form-ply. It can later be filled with a Universal plug R20/25.

Follow the directions in the Operating Instructions!

Connect superstructure components together

➤ e.g. connect the primary and secondary beams to rafter plates, and nail on the form-ply.
Link the frames in a crane-handling-safe manner

➤ Close the yellow and blue locking springs, by pressing them towards the outside.

Repositioning operation

➤ Working from the service tower, for example, attach the crane sling to the Lifting rods 15.0 and lift the tableform to its next location. Spread angle β max. 30°.

Shifting the table in skeleton construction

➤ Take the load off the table by turning the threaded spindles.
➤ Clamp on the wheel-units.
➤ Push in and secure the base units.
Lifting by forklift truck

Fork lift shifting device TG

For product information on the Fork lift shifting device TG and the requirements in respect of the forklift truck, see the section entitled 'Assembling towers in the upright by forklift truck'.

Follow the directions in the Operating Instructions!

Max. heights of load-bearing towers

<table>
<thead>
<tr>
<th></th>
<th>with superstructure</th>
<th>without superstructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>a 7.20 m</td>
<td>9.00 m</td>
<td>5.00 m</td>
</tr>
<tr>
<td>b 9.00 m</td>
<td>12.60 m</td>
<td>7.00 m</td>
</tr>
<tr>
<td>c 5.40 m</td>
<td>9.00 m</td>
<td>4.00 m</td>
</tr>
<tr>
<td>d 3.60 m</td>
<td>3.60 m</td>
<td>3.00 m</td>
</tr>
</tbody>
</table>

Travelling the towerframe units

NOTICE

Very important points for the moving procedure:

- As well as the fork-lift driver, a specially trained watchman must also be on hand during all lifting, assembly and travelling operations.
- Max. inclination of trackway: 2%.
- There must be a flat, firm (e.g. concrete) base that is capable of supporting the load.
General

Anchoring on the structure

With Anchoring shoe for stair tower

Methods for fixing in concrete:

- By using a Cone screw B 7cm to fix the anchoring shoe to an existing suspension point prepared with Universal climbing cones 15.0 (diameter of hole in anchoring shoe = 32 mm). Hardwood shim (essential for ensuring a firm fit) prevents damage to the concrete (scratch marks).
- This fixing method is only possible with anchoring shoes manufactured from 05/2009 onwards.
- With one or two dowels (diameter of hole in anchoring shoe = 18 mm).

Permitted loads [kN] | Anchorage method | Max. anchoring loads [kN] per anchor | Concrete strength at the time of loading
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile force Z</td>
<td>Shear force Q</td>
<td>Tensile force Z</td>
<td>Shear force Q</td>
</tr>
<tr>
<td>6.0</td>
<td>6.0</td>
<td>14.0</td>
<td>6.0</td>
</tr>
<tr>
<td>12.0</td>
<td>6.0</td>
<td>13.3</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>

NOTICE

When designing units assembled from tubes and couplers, all applicable standards and regulations must be observed, in particular EN 12812 'Falsework', EN 39 'Loose steel tubes for tube and coupler scaffolds' and EN 74 'Couplers, spigot pins and baseplates for use in falsework and scaffolds'.

Design of the anchoring planes

The load-bearing tower is connected to the Anchoring shoe for stair tower by scaffold tubes and couplers.

A Scaffolding tube 48.3mm (L min = distance from structure)
B Scaffolding tube 48.3mm (L = variable)
C Scaffolding tube 48.3mm (L = variable)
D Anchoring shoe for stair tower
E Swivel coupler 48mm
F Normal coupler 48mm
G Transition swivel coupler 48/76mm
H Horizontal diagonal brace
Vertical distance between the anchoring levels

- will depend on the assembly method, the wind loads and the design assumptions
- near junctions (frame-joins)

NOTICE

The load-bearing tower must be stiffened with a diagonal cross in the anchoring plane.

NOTICE

- The actual design of the anchoring planes, and the maximum permitted distances from the structure, must be reviewed separately for each project.
- Adjacent load-bearing towers must be braced to one another as statically required, in a similar way to when towers are anchored to the structure.
Back-stays/shoring supports for the load-bearing towers

Back-stay on the superstructure

Back-stay for load-bearing towers

For transferring **planned horizontal loads** e.g. wind loads, concrete loads or in custom applications (e.g. on inclined load-bearing towers or for high load-bearing capacities).

NOTICE

Lashing straps are **not** suitable for transferring planned horizontal loads.

Bores in Screw-jack unit and Shoe complete

- a ... diam. 21 mm
- b ... diam. 27 mm
- c ... diam. 35 mm

A Screw-jack unit
B Shoe complete

NOTICE

- Screw the tie rods all the way in to the rod connectors of the bracing (i.e. until they are fully engaged)!
- When calculating the leg loads, allow for the additional forces imposed by the bracing!
- With high loads and long back-stays, watch out for any elongation of the bracing!
Bracing force $A_k = 30$ kN ($A_d = 45$ kN)

<table>
<thead>
<tr>
<th>Anchor force [kN]</th>
<th>Z_a</th>
<th>$Q_a = H_a$</th>
<th>R_a</th>
<th>Z_d</th>
<th>$Q_d = H_d$</th>
<th>R_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 30^\circ$</td>
<td>18.2</td>
<td>26.0</td>
<td>31.7</td>
<td>27.3</td>
<td>39.0</td>
<td>47.6</td>
</tr>
<tr>
<td>$\alpha = 45^\circ$</td>
<td>27.6</td>
<td>21.2</td>
<td>34.8</td>
<td>41.4</td>
<td>31.8</td>
<td>52.2</td>
</tr>
<tr>
<td>$\alpha = 60^\circ$</td>
<td>44.8</td>
<td>15.0</td>
<td>47.2</td>
<td>67.2</td>
<td>22.5</td>
<td>70.8</td>
</tr>
</tbody>
</table>

Bracing force $A_k = 40$ kN ($A_d = 60$ kN)

<table>
<thead>
<tr>
<th>Anchor force [kN]</th>
<th>Z_a</th>
<th>$Q_a = H_a$</th>
<th>R_a</th>
<th>Z_d</th>
<th>$Q_d = H_d$</th>
<th>R_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 30^\circ$</td>
<td>24.3</td>
<td>34.6</td>
<td>42.3</td>
<td>36.5</td>
<td>51.9</td>
<td>63.5</td>
</tr>
<tr>
<td>$\alpha = 45^\circ$</td>
<td>36.8</td>
<td>28.3</td>
<td>46.4</td>
<td>55.2</td>
<td>42.5</td>
<td>69.6</td>
</tr>
<tr>
<td>$\alpha = 60^\circ$</td>
<td>59.7</td>
<td>20.0</td>
<td>62.9</td>
<td>89.6</td>
<td>30.0</td>
<td>94.4</td>
</tr>
</tbody>
</table>

Bracing force $A_k = 50$ kN ($A_d = 75$ kN)

<table>
<thead>
<tr>
<th>Anchor force [kN]</th>
<th>Z_a</th>
<th>$Q_a = H_a$</th>
<th>R_a</th>
<th>Z_d</th>
<th>$Q_d = H_d$</th>
<th>R_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 30^\circ$</td>
<td>30.4</td>
<td>43.3</td>
<td>52.9</td>
<td>45.6</td>
<td>65.0</td>
<td>79.4</td>
</tr>
<tr>
<td>$\alpha = 45^\circ$</td>
<td>46.0</td>
<td>35.4</td>
<td>58.0</td>
<td>69.0</td>
<td>53.1</td>
<td>87.0</td>
</tr>
<tr>
<td>$\alpha = 60^\circ$</td>
<td>74.6</td>
<td>25.0</td>
<td>78.7</td>
<td>111.9</td>
<td>37.5</td>
<td>118.1</td>
</tr>
</tbody>
</table>

Examples of anchor points in uncracked C 25/30 concrete:

- a) HILTI heavy-duty anchor HSL-3 M20
- b) HILTI heavy-duty anchor HSL-3 M24
- c) HILTI HIT HY200A+HIT-V(5.8) M30
- other equivalent products from other manufacturers.

Follow the manufacturers’ applicable fitting instructions.

CAUTION

- Do not remove the bracing for load-bearing towers before adequate stability for the load-bearing tower is ensured.

Anchored with Doka Express anchor 16x125mm

Note:
The ‘Shoe (complete)’ must be turned by 180° in the horizontal.

Permitted bracing force [kN]

<table>
<thead>
<tr>
<th>$f_{k,cube, current} > 15$ N/mm²</th>
<th>A_k</th>
<th>A_d</th>
<th>A_k</th>
<th>A_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha = 30^\circ$</td>
<td>16.9</td>
<td>25.4</td>
<td>21.9</td>
<td>32.9</td>
</tr>
<tr>
<td>$\alpha = 45^\circ$</td>
<td>10.2</td>
<td>15.2</td>
<td>13.2</td>
<td>19.7</td>
</tr>
<tr>
<td>$\alpha = 60^\circ$</td>
<td>7.1</td>
<td>10.6</td>
<td>9.1</td>
<td>13.7</td>
</tr>
</tbody>
</table>

Follow the directions in the ‘Doka express anchor 16x125mm’ Fitting Instructions!
Bracing waling connector WS10

The Bracing waling connector WS10 is used for bracing load-bearing towers erected on ground which has sufficient load-bearing capacity but in which it is not possible to fix tension anchoring.

It is also possible to brace several load-bearing towers to one another to transfer the horizontal loads jointly.

Bracing individual towers in the bracing-strut and frame planes

Note:
Separate towers may also be braced in the frame plane or bracing-strut plane only.

Close-up

Permissible back-stay force [kN]

<table>
<thead>
<tr>
<th>Bolted on through the upper bore (Ø 21 mm) of the screw-jack unit</th>
<th>Bolted on through the lower bore (Ø 27 mm) of the screw-jack unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.0</td>
<td>40.0</td>
</tr>
</tbody>
</table>

A Screw-jack unit

Permitted tensile force: 50 kN

➤ When calculating the leg loads on the Load-bearing tower, allow for the additional forces from the bracing!
Shoring to the superstructure

For transferring **planned horizontal loads** e.g. wind loads, concrete loads or in custom applications (e.g. on inclined load-bearing towers or for high load-bearing capacities).

CAUTION

➤ Do not remove the compression bracing before adequate stability for the load-bearing tower is ensured.

Fixing to the ground

➤ Anchor the plumbing accessories in such a way as to resist tensile and compressive forces!

Holes in plumbing strut shoe Eurex 60:

* a ... diam. 28 mm
* b ... diam. 18 mm (suitable for Doka express anchors)

anchoring the footplate

The **Doka express anchor** can be re-used many times over.

Permitted load-bearing capacity of Eurex 60 550 (compressive force)

Follow the Fitting Instructions!

Anchored with one dowel (up to 15 kN tensile force)

Required safe working load of alternative anchors for footplates:

* $R_d \geq 30.0 \text{ kN (} F_{\text{permissible}} \geq 20.0 \text{ kN)}$ in the diam. 18 mm hole
* $R_d \geq 43.5 \text{ kN (} F_{\text{permissible}} \geq 29.0 \text{ kN)}$ in the diam. 28 mm hole

Follow the manufacturers' applicable fitting instructions.

Tr 717-200-02

9745-222-01

Follow the fitting instructions!

CAUTION

➤ Do not remove the compression bracing before adequate stability for the load-bearing tower is ensured.

Used as a plumbing accessory

Follow the fitting instructions!

Follow the Fitting Instructions!
Anchored with two dowels (up to 30 kN tensile force)

![Notice Icon]

NOTICE
- One dowel must be positioned between the lugs of the footplate.
- Remove the footplate from the plumbing strut for this step.
- After anchoring the footplate, reinstall the Plumbing strut Eurex 60 550 at the position shown.

Characteristic cube compressive strength of the concrete (f_{c_k,cube, current}): min. 30 N/mm² (C25/30 concrete)

Required safe working load of alternative anchors for footplates:
\[R_d \geq 30.0 \text{ kN} \]
\[F_{\text{permissible}} \geq 20.0 \text{ kN} \]

Follow the manufacturers' applicable fitting instructions.

Temporary back-stays directly on the load-bearing tower, for site-erection

![Notice Icon]

NOTICE
Only suitable for use during erection of the load-bearing tower, but **not** for transferring planned horizontal loads.

![Diagram]

- **A** Scaffolding tube 48.3mm (with drilled hole Ø17mm)
- **B** Normal coupler 48mm
- **C** Spindle connecting plate T
- **D** Back-stay for load-bearing towers
- **E** Tie-rod 15.0mm
Inclination adjustment

If the superstructure or the ground are inclined at an angle of 1% or more, slope compensation must be provided.

using Wedges for screw-jack %

These prefabricated birch plywood wedges make it possible to stand load-bearing towers in the perpendicular on surfaces with various inclinations, even when utilising the full leg load.

CAUTION

Excessively steep wedges may slip away!

Maximum inclination: 20%!

For this reason, wedges must NOT be placed on top of one another in an attempt to compensate for inclinations that are greater than 20%.

Inclined superstructures

Securing the superstructure at angles greater than 12%:

➤ Connect the head-plate to the longitudinal beam (e.g. with Locking rod 15.0 330mm and Super plate 15.0 or Angle anchor plate 12/18)

![Diagram of superstructure connection](image)

A Wedge for screw-jack %
B Locking rod 15.0 330mm
C Super plate 15.0

Inclined ground surface

using Staxo wedge support WS10

Used with timber wedges, this component provides angle adjustment to floor-slab constructions with a max. inclination of 45°.

Bolted into the multipurpose waling, this wedge support prevents the timber wedges slipping and ensures that the loads are safely transferred.

NOTICE

This type of connection is no substitute for extra structural design measures such as back-stays.

![Diagram of wedge support WS10](image)

A Staxo wedge support WS10
B Timber wedge, project-specific
C Multi-purpose waling WS10 Top50
D Nailed connection

NOTICE

The grain of the timber wedges must always be in the vertical!

Note:

If the legs of the load-bearing tower have to be located outside the pattern of drilled holes in the multi-purpose waling, then a suitable 20 mm diam. hole must be drilled in the web of the waling.

using Staxo wedge support WU12/14

Same function as Staxo wedge support WS10, except that it is suitable for being pinned to a 12 cm or 14 cm high waling.

The wedge support is labelled '12' and '14' on the respective sides, to ensure that it is always correctly positioned.

![Diagram of wedge support WU12/14](image)

A Staxo wedge support WS10
B Timber wedge, project-specific
C Multi-purpose waling WS10 Top50
D Nailed connection

NOTICE

This type of connection is no substitute for extra structural design measures such as back-stays.
using an M20 hexagonal bolt

In this case, the superstructure rests on e.g. an M20x240 hexagonal bolt (A). This bolt is inserted through the recessed opening in the Screw jack U-head and is secured with a self-locking M20 hexagon nut.

CAUTION

➤ Maximum inclination: 8%!

Rotatable in all directions, the Swivel bearing plate for Screw jack U-head has been designed for use with slab supports where the superstructure slopes on both sides.

On projects where the superstructure slopes on one side only, the solutions shown above are preferable. The Swivel bearing plate for Screw jack U-head is only allowed to be used in conjunction with the Screw jack U-head or Heavy duty screw jack 70 top.

Note:
When assessing the oblique bending, always consult the Statical Calculation Dept.!

NOTICE

The following structural-design limitations must be taken into account:

▪ Swivel bearing plate for Screw jack U-head' on head unit only:
 - Use only the permitted leg loads for 'Head units not restrained' for constructing the superstructure, but do not exceed 65 kN.
▪ Swivel bearing plate for Screw jack U-head on both head and base unit:
 - Use only the permitted leg loads for 'Head units not restrained' for constructing the superstructure, but with an additional load reduction of 25%.
▪ Maximum inclination of superstructure: 18%
▪ Permitted overall inclination (in both the longitudinal and transverse directions): 18%
▪ From an overall inclination of 12%: Superstructure must be secured!
▪ Allow for the oblique bending on the primary beam!
▪ When calculating the extension lengths of the head and base units, always allow for the extra height of the Swivel bearing plate for Screw jack U-head (92 mm).

NOTICE

The following geometrical limitations must be taken into account:

▪ Maximum widths of walings / beams (see the section headed 'Steel primary beams').
▪ Additional height of the Swivel bearing plate for Screw jack U-head (92 mm).
▪ Different foot/U-head extension lengths caused by inclined superstructures.
Assembly

Multi-purpose waling centrally clamped on the Swivel bearing plate for Screw jack U-head:
▶ Insert a Locking rod 15.0 330mm through one of the side holes (diam. 18 mm) on the Swivel bearing plate for Screw jack U-head.
▶ Using the nuts & bolts etc. supplied with the product, fix the Swivel bearing plate for Screw jack U-head to the Screw jack U-head or Heavy duty screw jack 70 top (spanner size 17 mm).
▶ Place the multi-purpose waling on the Swivel bearing plate for Screw jack U-head.
▶ Screw a Super-plate 15.0 onto the Locking rod 15.0 and tighten it.

To prevent the Multi-purpose walings tipping over while an unattached superstructure is being mounted, it is advisable – even where the overall inclination is less than 12 % (in both the longitudinal and transverse directions) – to attach 2 Doka H20 beams (K) to each Multi-purpose waling using Flange-clamps H20 (L).

IPB structural steel section clamped on its side on the Swivel bearing plate for Screw jack U-head:
▶ Using the nuts & bolts etc. supplied with the product, fix the Swivel bearing plate for Screw jack U-head to the Screw jack U-head or Heavy duty screw jack 70 top (spanner size 17 mm).
▶ Place the IPB structural steel section on the Swivel bearing plate for Screw jack U-head.
▶ From below, insert Locking rods 15.0 330mm through the punched-out holes on the bent edge of the Swivel bearing plate for Screw jack U-head.

Place a Clamping plate for U-head over the Locking rods 15.0 and screw it down tightly with hexagon nuts 15.0.
The 'Compensating plate' is made of tough plastic and is used to compensate for sloping support surfaces beneath load-bearing towers, without limiting their load-bearing capacity.

- Angle adjustment from 0 - 16 % in all directions.
- The baseplate is always supported across its entire area.
- The punch-marked number scale is a practical aid for setting and checking the required angle.
- No timber wedges or other chocks are needed.
- Max. size of baseplate: 15 x 15 cm (meaning that Eurex 60 550 cannot be stood on it)

NOTICE
- The 'Compensating plate' must be placed on concrete only.
- For the proof against slippage between the Compensating plate and the concrete, a friction coefficient of 0.33 must be assumed.

Set-up instructions:
- Place the 'Compensating plates' on concrete.
- Set the required angle with the black rotary plate. The numbers must correspond – see close-up.
- Position the Doka load-bearing tower.

Make sure that the 'Compensating plate' is sitting firmly, and check that the leg is in the vertical.
Adaptation to building layout with Staxo 100 single legs

We recommend using the "Modul" scaffolding or a commercially available movable scaffold to facilitate assembly.

Standard design

a ... Inter-frame spacing = 100/150/200/250/300 cm
b ... Frame width = 152 cm
c ... Distance of add-on single-leg plane from main tower = 25 - 150 cm

A Staxo 100 single leg 1.80, 1.20 or 0.90 m
E Diagonal cross (the type will depend on the size of frame and the inter-frame space)
F Diagonal cross 9.xxx (where distance 'c' is between 120 cm and 150 cm – otherwise use a scaffolding tube as bracing)

WARNING
Allow for the reduced loading capacities!
➤ Can only be used on top-held load-bearing towers.
➤ Allow for higher assumed wind loads!

NOTICE
• Horizontal diagonal crosses 9.xxx are needed at intervals of every two 'storeys' - beginning with the first storey.
• It is not possible to use Diagonal crosses 9.060 and 12.060 in single-leg configurations.
• On load-bearing towers higher than 13.20 m, extra bracing – with scaffolding tubes 48.3mm and Normal couplers 48mm – must be mounted in the bottom storey.
Practical examples

- Reducing the number of legs (instead of 2 tower units, an extra leg-plane is added to one side of the tower).

- Adapting to angled or curved layouts.

Wheeling

![Notice]

Before a Staxo tower with extra legs can be wheeled, vertical bracing must be added in the bottom 'storey' between these single legs and the Staxo 100 tower!
with Eurex 60 550 floor props

Follow the directions in the 'Eurex 60 550' User Information!

Product description

- The perfect complement to all Doka load-bearing towers.
- Transfers loads economically, also in confined spaces.
- Extension length: 3.50 to 5.50 m
- For even greater heights, the prop can be lengthened to 7.50 m or 11.0 m. In this case, allow for the reduction in capacity as shown in the diagram!
- Meets DIBT - German Institute for Construction Engineering - approvals criteria.
- Special aluminium profile tubes give the prop its low weight of only 47.0 kg.

- Can be telescoped in 10 cm increments, with continuous fine adjustment.
- All parts are captively integrated - telescopic tube has anti-dropout safeguard.
Permitted load-bearing capacity of Eurex 60 550

Permitted capacities [kN] as a function of the extension length and the position of the outer tube (prop category T55 to EN 16031)

<table>
<thead>
<tr>
<th>Prop length [m]</th>
<th>at bottom</th>
<th>at top</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>61.8</td>
<td>67.0</td>
</tr>
<tr>
<td>5.4</td>
<td>65.0</td>
<td>70.9</td>
</tr>
<tr>
<td>5.3</td>
<td>68.5</td>
<td>74.9</td>
</tr>
<tr>
<td>5.2</td>
<td>72.1</td>
<td>78.6</td>
</tr>
<tr>
<td>5.1</td>
<td>76.0</td>
<td>83.5</td>
</tr>
<tr>
<td>5.0</td>
<td>80.3</td>
<td>88.6</td>
</tr>
<tr>
<td>4.9</td>
<td>84.0</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*) Position of outer tube

<table>
<thead>
<tr>
<th>at bottom</th>
<th>at top</th>
</tr>
</thead>
<tbody>
<tr>
<td>88.9</td>
<td>88.9</td>
</tr>
</tbody>
</table>

Holding primary beams

U-head Eurex 60 for steel girders (e.g. WS10), squared timbers or formwork beams H20

Four-way head Eurex 60 for single or double formwork beams H20

Assembly

➤ Place the U-head or four-way head on the prop and fix with spring-steel stirrup.

Bracing

Swivel couplers Eurex 60 can be fixed at any height on the outer tube. This means that bracing tubes can be attached wherever needed.

Examples:
- between prop and load-bearing tower frame
- between two or more props
- to facilitate erection of the prop (as a 'handle' for workers to hold onto)
Holding Eurex 60 550 floor props upright during erection

Removable folding tripod 1.20m

Plumbing struts

A Floor prop Eurex 60 550
B Removable folding tripod 1.20m

A Deckenstütze Eurex 60 550
B Plumbing strut 340 or 540 IB with Strut shoe EB
Secondary-beam stabilisers

Secondary-beam stabilisers are used to prevent formwork beams tipping over while panels are being laid on them.

<table>
<thead>
<tr>
<th>Secondary-beam stabiliser 1</th>
<th>Secondary-beam stabiliser 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Advantages:
- Special claws to prevent slippage on the beam-flange
- Needs only small commissioning quantities, as the Secondary-beam stabilisers can be re-set in tandem with the formwork erection cycle:
 - approx. 20 Secondary-beam stabilisers 1
 - approx. 10 Secondary-beam stabilisers 2

Note:
In certain special situations, (e.g. when forming inclined floor-slabs), Secondary-beam stabilisers can also be used for transferring horizontal loads.
For more information, please contact your Doka technician.

Assembly:

- Hang the Secondary-beam stabilisers into place with an Alu beam fork H20.

 ![Assembly Diagram](image3)

 The secondary beam is now held in place.
- Lay the formwork sheets.
- After the formwork sheets have been laid, unhook and remove the Secondary-beam stabilisers with an Alu beam fork H20.
Combining Staxo 100 with Staxo

NOTICE

In principle, the system frames of the Load-bearing towers Staxo and Staxo 100 are compatible with one another. Ideally, however, the tower frames should be assembled from components of the same system. The diagrams in the User Information booklet and type-test only apply to mono-system tower frames. If this is not possible, then the following points must be remembered:

- The lower leg loads permitted for the Staxo system must be assumed.
 - Custom applications with permitted capacities of 85 or 97 kN per leg are not possible
 - No type-test
- At the very least, each 'storey' must be assembled from components of the same system (because the two systems use different horizontal diagonal braces).

For details regarding structural design, set-up and use, see the User Information booklet 'Doka load-bearing tower Staxo'!
Combining with Dokamatic tables

Superstructure attached by Dokamatic table Staxo spindle connectors

- Ready-assembled Dokamatic tables can be mounted directly onto Staxo 100
- Height adjustment is possible in both the head and base zone of the load-bearing tower
- Superstructure can be inclined by up to 12% (in both the longitudinal and transverse directions)

![Diagram of the load-bearing tower Staxo 100](image)

NOTICE
This configuration requires screwjack feet at the top of the tower instead of the usual screw-jack head units!

Assembly

- Mount a Screw-jack foot on the top frame.
- Bolt the 'Dokamatic table Staxo spindle connector' onto the Screw-jack foot.
 Spanner size (width-across): 24 mm

Attaching the Dokamatic table:

- Place the Dokamatic table onto the Staxo unit with the aid of two Dokamatic lifting straps 13.00m and the crane.
- Fit Connecting pins 10cm to connect the table, and secure these with spring cotters. The second connecting pin on each longitudinal connection prevents any displacement of the table superstructure.

Diagram of the attachment setup

- B Dokamatic table Staxo spindle connector
- C Screw-jack foot
- D Dokamatic lifting strap
- E Connecting pin 10cm
- F Spring cotter 5mm
- G Dokamatic table
Inclinations

using Wedges for screw-jack % (hardwood wedge)

➢ Bolt the 'Wedge for screw-jack %' onto the Screw-jack foot. If any more holes are needed in the 'Wedge for screw-jack', these can be drilled on-site.

![Diagram showing Wedge for screw-jack](image)

Details of extra holes in the Wedge for screw-jack%

<table>
<thead>
<tr>
<th>H</th>
<th>Wedge for screw-jack %</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>Holes to be drilled (diam. 20 mm)</td>
</tr>
<tr>
<td>K</td>
<td>Ready-drilled hole (diam. 20 mm)</td>
</tr>
</tbody>
</table>

NOTICE

Max. table inclination 12% (in both the longitudinal and transverse directions).
Steel primary beams

The following tables will be helpful to you when you are planning load-bearing tower superstructures consisting of steel primary beams and Screw jack U-heads, Heavy duty screw jacks 70 top or Swivel bearing plates for Screw jack U-head.

Usage conditions for Doka series walings

<table>
<thead>
<tr>
<th>Doka series walings</th>
<th>Width x height [mm]</th>
<th>Unsecured Max. width = 165 mm</th>
<th>Secured centrally (necessary from 12%) Max. width = 165 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-purpose waling WS10 Top50</td>
<td>153 x 100</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-purpose waling WU12 Top50</td>
<td>163 x 120</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Facade waling WU14</td>
<td>172 x 140</td>
<td>Yes ¹</td>
<td>Yes ¹</td>
</tr>
<tr>
<td>Multi-purpose waling SL-1 WU16</td>
<td>183 x 160</td>
<td>Yes ¹</td>
<td>Yes ¹</td>
</tr>
<tr>
<td>System beam SL-1</td>
<td>226 x 240</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

¹) Hardwood support (A) needed.
The bevelled edges prevent it resting in the curved radius zone. This results in a max. available width of 188 mm.

Usage conditions for various I-section girder

<table>
<thead>
<tr>
<th>Selection of I-girders</th>
<th>Width x height [mm]</th>
<th>Unsecured Max. width = 165 mm</th>
<th>Secured at side (necessary from 12%) Max. width = 150 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I 380</td>
<td>149 x 380</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>I 425</td>
<td>163 x 425</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>IPE 300</td>
<td>150 x 300</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPE 330</td>
<td>160 x 330</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>IPBI 140</td>
<td>140 x 133</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPBI 160</td>
<td>160 x 152</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>IPB 140</td>
<td>140 x 140</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPB 160</td>
<td>160 x 160</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Intermediate level made up with multi-purpose walings

Intermediate levels made up from multi-purpose walings permit the transfer of horizontal loads. The possibilities for using multi-purpose walings for this purpose are as follows:

- Connection of a back-stay
- Support against / anchoring to the structure
- Formation of a truss of cross-braced horizontal multi-purpose walings

Assembly

➤ Insert Coupler WS10 250 into the Staxo 100 frame and bolt it into position.
➤ Set the multi-purpose waling on the coupler.
➤ Clamp the Multi-purpose waling WS10 to the coupler.
➤ Set the next Staxo 100 frame on the coupler and bolt it into position.

The scope of supply of the Coupler WS10 250 includes:

- 2 hexagon bolts M16x80
- 2 hexagon bolts M16x160
- 4 washers 16
- 4 hexagon nuts M16 (self-locking)

Note:
As an alternative to the bolts, it is also possible to make the connection between coupler and Staxo 100 frame using Spring locked connecting pins 16mm.

Animation: https://player.vimeo.com/video/278154472
Transporting, stacking and storing

Utilise the benefits of Doka multi-trip packaging on your site.
Multi-trip packaging such as containers, stacking pallets and skeleton transport boxes keep everything in place on the site, minimise time wasted searching for parts, and streamline the storage and transport of system components, small items and accessories.

Doka pallet for Staxo/Aluxo

Storage and transport device for Staxo, Staxo 100 or Aluxo frames (max. 20 frames per pallet):
- durable
- stackable

Suitable transport appliances:
- crane
- pallet stacking truck
- forklift truck

Other features:
- Integral lashing strap for fixing the tower frames
- The connection sleeves on the frames remain extended.
- 1.20 m (4'-0") wide - ideal for transporting by truck

Max. load: 750 kg (1650 lbs)
Permitted imposed load: 1630 kg (3600 lbs) (max. 3 stacked pallets)

NOTICE
- Stacked multi-trip boxes or pallets must have the heaviest boxes at the bottom and the lightest at the top.
- The rating plate must be in place and clearly legible.

Loading the transport device

CAUTION
- It is not allowed to mix frames of different heights!
- Unwind the lashing strap from the Doka pallet for Staxo/Aluxo.
- Fix the connection sleeves of the Staxo or Aluxo frames in the extended position, using the yellow security spring.
- Insert the legs of the frames into the location holes.
- Depending on the height of the frames, pull the lashing strap either around the cross profile or (with 1.80m frames) around the top ladder-rung profile, hook it into the belt hook and tighten it carefully.

NOTICE
- Overtightening the lashing strap can damage the cross profiles of the load-bearing tower frames.
- On pallets with 'open' belt hooks that are being used for 1.80m high frames, the lashing strap MUST always be in the position shown.

Version with 'closed' belt hook
Version with 'open' belt hook
Using Doka pallets for Staxo/Aluxo as storage units

Storage of filled pallets

NOTICE
- The pallets at the bottom of the stack must be completely and uniformly filled.
- Make sure that the connection sleeves are fixed in place and that the lashing strap is in the right position and is correctly tensioned.

<table>
<thead>
<tr>
<th>Type of frame</th>
<th>Max. number of pallets Stacked on the site (outdoors); floor gradients of up to 3%</th>
<th>Max. number of pallets Stacked in the warehouse; floor gradients of up to 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluxo frame 1.20m</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Aluxo frame 1.80m</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Staxo / Staxo 100 frame 0.90m</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Staxo / Staxo 100 frame 1.20m</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Staxo / Staxo 100 frame 1.80m</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Storage of empty pallets

NOTICE
- When empty pallets are stacked, the lashing straps must be wound around the vertical profiles, attached to the belt hook and tensioned.

<table>
<thead>
<tr>
<th>Type of frame</th>
<th>Max. number of pallets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stacked on the site</td>
<td>all</td>
</tr>
<tr>
<td>Stacking in the warehouse</td>
<td>all</td>
</tr>
</tbody>
</table>

Lifting by crane

WARNING
- Do not attach the lifting chain to the Staxo or Aluxo frames!
The lashing strap is not designed to be used for hoisting loads – risk of rupture!
- The lifting chain may only be attached to the 4 slinging points on the Doka pallet for Staxo/Aluxo.

NOTICE
- Multi-trip packaging items may only be lifted one at a time.
- Use a suitable lifting chain (e.g. Doka 4-part chain 3.20m).
- Do not exceed the permitted load-bearing capacity.
- Spread-angle β max. 30°!

Repositioning by forklift truck or pallet stacking truck

NOTICE
- The forks of the transport appliances may only be placed beneath the cross profiles of the Doka pallet for Staxo/Aluxo!
- Push stacker-truck forks as far apart as possible.
Using Doka skeleton transport boxes 1.70x0.80m as transport devices

Lifting by crane

NOTICE

- Multi-trip packaging items may only be lifted one at a time.
- Only lift the boxes when their sidewalls are closed!
- Use a suitable crane suspension tackle (e.g. Doka 4-part chain 3.20m). Do not exceed the permitted load-bearing capacity.
- Spread angle β max. 30°!

Repositioning by forklift truck or pallet stacking truck

The forks can be inserted under either the broadside or the narrowside of the containers.

Using Doka skeleton transport boxes 1.70x0.80m as storage units

Max. n° of boxes on top of one another

<table>
<thead>
<tr>
<th>Outdoors (on the site)</th>
<th>Indoors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor gradient up to 3%</td>
<td>Floor gradient up to 1%</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

It is not allowed to stack empty pallets on top of one another!
Doka multi-trip transport box 1.20x0.80m galv.

Storage and transport devices for small items:
- durable
- stackable

Suitable transport appliances:
- crane
- pallet stacking truck
- forklift truck

Max. load: 1500 kg (3300 lbs)
Permitted imposed load: 7850 kg (17305 lbs)

NOTICE
- Multi-trip packaging items that each contain very different loads must be stacked with the heaviest ones at the bottom and the lightest ones at the top!
- Rating plate must be in place and clearly legible

Multi-trip transport box partition

Different items in the Multi-trip transport box can be kept separate with the Multi-trip transport box partitions 1.20m or 0.80m.

Possible ways of dividing the box

<table>
<thead>
<tr>
<th>Multi-trip transport box partition lengthways</th>
<th>Crossways</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.20m max. 3 partitions</td>
<td>-</td>
</tr>
<tr>
<td>0.80m</td>
<td>max. 3 partitions</td>
</tr>
</tbody>
</table>

Using Doka multi-trip transport boxes as storage units

Max. number of boxes on top of one another

<table>
<thead>
<tr>
<th>Outdoors (on the site)</th>
<th>Indoors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor gradient up to 3%</td>
<td>Floor gradient up to 1%</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

It is not allowed to stack empty pallets on top of one another!

Using Doka multi-trip transport boxes as transport devices

Lifting by crane

NOTICE
- Multi-trip packaging items must be lifted individually.
- Use a suitable crane lifting tackle (e.g. Doka 4-part chain 3.20m).
- Do not exceed the permitted load-bearing capacity.
- Spread angle β max. 30°!

Repositioning by forklift truck or pallet stacking truck

The forks can be inserted under either the broadside or the narrowside of the containers.
Doka stacking pallet 1.55x0.85m and 1.20x0.80m

Storage and transport devices for long items:
- durable
- stackable

Suitable transport appliances:
- crane
- pallet stacking truck
- forklift truck

Max. load: 1100 kg (2420 lbs)
Permitted imposed load: 5900 kg (12980 lbs)

NOTICE
- Multi-trip packaging items may only be lifted one at a time.
- Use a suitable crane suspension tackle (e.g. Doka 4-part chain 3.20m).
 Do not exceed the permitted load-bearing capacity.
- Load the items centrically.
- Fasten the load to the stacking pallet so that it cannot slide or tip out.
- Spread angle β max. 30°!

Using Doka stacking pallets as transport devices

Lifting by crane

NOTICE
- Load the items centrically.
- Fasten the load to the stacking pallet so that it cannot slide or tip out.
- Spread angle β max. 30°!

Repositioning by forklift truck or pallet stacking truck

NOTICE
- Load the items centrically.
- Fasten the load to the stacking pallet so that it cannot slide or tip out.
- Spread angle β max. 30°!

<table>
<thead>
<tr>
<th>Max. n° of units on top of one another</th>
<th>Outdoors (on the site)</th>
<th>Indoors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor gradients of up to 3%</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

It is not allowed to stack empty pallets on top of one another!

Note:
How to use with bolt-on castor set:
Always apply the fixing brake when the container is ‘parked’.
When Doka stacking pallets are stacked, the bottom pallet must NOT be one with a bolt-on caster set mounted to it.
Doka accessory box

Storage and transport devices for small items:
- durable
- stackable

Suitable transport appliances:
- crane
- pallet stacking truck
- forklift truck

The Doka accessory box is the tidy, easy-to-find way of storing and stacking all interconnection and form-tie components.

Max. load: 1000 kg (2200 lbs)
Permitted imposed load: 5530 kg (12191 lbs)

NOTICE
- Multi-trip packaging items that each contain very different loads must be stacked with the heaviest ones at the bottom and the lightest ones at the top!
- Rating plate must be in place and clearly legible

Doka accessory boxes as storage units

Max. n° of boxes on top of one another

<table>
<thead>
<tr>
<th></th>
<th>Outdoors (on the site)</th>
<th>Indoors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor gradient up to 3%</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>It is not allowed to stack empty pallets on top of one another!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
How to use with bolt-on castor set:
Always apply the fixing brake when the container is 'parked'.
When Doka accessory boxes are stacked, the bottom box must NOT be one with a bolt-on castor set mounted to it.

Doka accessory box as transport devices

Lifting by crane

NOTICE
- Multi-trip packaging items may only be lifted one at a time.
- Use a suitable crane suspension tackle (e.g. Doka 4-part chain 3.20m). Do not exceed the permitted load-bearing capacity.
- Spread angle β max. 30°!

Repositioning by forklift truck or pallet stacking truck

The forks can be inserted under either the broadside or the narrowside of the containers.

Bolt-on castor set B

The Bolt-on castor set B turns the stacking pallet into a fast and manoeuvrable transport device.
Suitable for drive-through access openings > 90 cm.

The Bolt-on castor set B can be mounted to the following multi-trip packaging items:
- Doka accessory box
- Doka stacking pallets

Follow the directions in the 'Bolt-on castor set B' Operating Instructions!
Removing and refitting the connection sleeve

Removing

➤ Using a tie rod, push the connection sleeve upwards until it hits the stop.

➤ Use a screwdriver to press the spring out of the way.

➤ Pull out the connection sleeve as far as the stop.
➤ Stick a pointed object (e.g. a nail) into the hole in the connection sleeve until the spring no longer reaches over the stop.

➤ Completely pull out the connection sleeve.

Safely stow away the loose connection sleeve so that it can be reinstalled in the Staxo 100 frame when work is finished.
Animation: https://player.vimeo.com/video/267754531

Installation

➤ Use a screwdriver to press the spring out of the way.
➤ Push the connection sleeve into the frame tube from below, until it hits the stop (make sure that the spring (A) is in the right position)

➤ Use a screwdriver to press the rear stop out of the way.

➤ Keep pushing in the connection sleeve until the spring snaps into place.
➤ Press the yellow locking spring towards the outside. This fixes the connection sleeve in the frame.

The Staxo 100 frame is now back in its as-delivered condition.
Animation: https://player.vimeo.com/video/267754843
Preconditions for use

- Working wind of 0.2 kN/m² (64.4 km/h) is considered
- Separate proof must be provided, by a suitably skilled person, regarding the foundation. Particular attention must be paid here to the ground-bearing pressure!
- Intermediate anchoring planes may be necessary while the towers are being erected.
- The calculated values are in line with the 'Type test for Staxo 100' and thus also with EN 12812 and EN 1993.
- In all cases which differ from the stated boundary conditions, the type-test must be used as the basis for the dimensioning calculation, to ensure adequate stability.

Such deviations may be due to:
- variations in height
- different wind loads
- different inter-frame spacings
- additional horizontal loads
- single legs
- larger screw-jack extension lengths
- inclined load-bearing tower

- On multi-plane towers with different inter-frame spaces, it is always the smallest inter-frame space that determines the design load.

Inclination adjustment

- Inclination adjusted with a centering strip (e.g. hexagon bolt M20x230) or Swivel bearing plate for Screw jack U-head = Screw-jack U-head not restrained.
- Inclination adjusted with a wooden wedge or 'Compensating plate' = no effect on the restraint situation.
 - e.g. with Wedge for screw jack U-head or Staxo wedge support

Founding with the 'Compensating plate'

- The 'Compensating plate' must be placed on concrete only.
- For the proof against slippage between the Compensating plate and the concrete, a friction coefficient of 0.33 must be assumed.

Ranges of use for top-held systems

<table>
<thead>
<tr>
<th>Height of load-bearing tower</th>
<th>Dynamic pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>h ≤ 15 m</td>
<td>q_k ≤ 1.3 kN/m²</td>
</tr>
<tr>
<td>15 m < h ≤ 21 m</td>
<td>q_k ≤ 0.8 kN/m²</td>
</tr>
</tbody>
</table>

Ranges of use for free-standing systems

For each 1% angle of inclination, increase the minimum imposed loads by +10% (max. +160%).
This fulfils the local proof against slippage between theCompensating plate and the concrete ($\mu_k = 0.33$).

Set-up configurations

- Extra bracing is only necessary if the screw-jack heads are not connected with one another by way of the formwork base.
- Scaffold tube 48.3mm

<table>
<thead>
<tr>
<th>As tower</th>
<th>With multiple towerframe-planes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of frame planes = 2</td>
<td>Number of frame planes ≥ 3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Swivel coupler 48mm
- Split nut B
- Heavy-duty screw jack 70
- Heavy-duty screw jack 70 top
Superstructure configuration

<table>
<thead>
<tr>
<th>Top-held systems</th>
<th>Free-standing systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Head units restrained

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Double primary beams consisting of timber formwork beams to DIN EN 13377</td>
<td>Single primary beams consisting of timber formwork beams to DIN EN 13377</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Single primary beams consisting of Doka beams I tec 20 to Z-9.1-773</td>
<td>Centring beams</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-purpose walings</td>
<td>Swivel head</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Friction-locked, unloaded secondary beam</td>
<td>or transverse, unloaded WS10 walings between longitudinal WS10 walings and screwjack U-heads</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-purpose walings with braced screw jack U-heads without stiffeners</td>
<td>Multi-purpose walings with screw jack U-heads without stiffeners</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Max. secondary-beam spacing 50 cm

1) due to the higher rigidity of the flanges and the web
Permitted leg loads

Free-standing systems (without bracing, without holding device)

<table>
<thead>
<tr>
<th>Frame size [m]</th>
<th>Screw-jack extension lengths [cm] at top and bottom respectively</th>
<th>Inter-frame space [m]</th>
<th>Number of frame planes connected to one another by diagonal crosses (multi-plane tower)</th>
<th>Max. height [m] of load-bearing tower without intermediate anchoring (Intermediate anchoring planes may be necessary while the towers are being erected)</th>
<th>Permitted leg load [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unbraced</td>
<td>Braced</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>up to 1.80</td>
<td>30</td>
<td>70</td>
<td>≥ 1.5</td>
<td>≥ 2</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥ 1.0</td>
<td>≥ 3</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥ 5</td>
<td>13.2</td>
<td></td>
</tr>
<tr>
<td>up to 1.20</td>
<td>30</td>
<td>45</td>
<td>≥ 1.0</td>
<td>≥ 3</td>
<td>7.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥ 5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥ 8</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Top-held systems (e.g. enclosed space, or with bracing)

<table>
<thead>
<tr>
<th>Frame size [m]</th>
<th>Screw-jack extension lengths [cm] at top and bottom respectively</th>
<th>Inter-frame space [m]</th>
<th>Number of frame planes connected to one another by diagonal crosses (multi-plane tower)</th>
<th>Max. height [m] of load-bearing tower without intermediate anchoring (Intermediate anchoring planes may be necessary while the towers are being erected)</th>
<th>Permitted leg load [kN]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unbraced</td>
<td>Braced</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>up to 1.80</td>
<td>30</td>
<td>70</td>
<td>≥ 1.5</td>
<td>≥ 2</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>up to 1.20</td>
<td>30</td>
<td>45</td>
<td>≥ 1.5</td>
<td>≥ 2</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥ 1.0</td>
<td>≥ 3</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥ 5</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>up to 1.20</td>
<td>25</td>
<td>45</td>
<td>≥ 1.5</td>
<td>≥ 2</td>
<td>3.5</td>
</tr>
<tr>
<td>(with 0.90 in top and bottom ‘storeys’)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥ 1.0</td>
<td>≥ 3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥ 5</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

- Permitted leg load where 2 Doka beams I tec 20 are used as primary beams in conjunction with Staxo 100: 60 kN
- Permitted leg load where 2 Doka beams I tec 20 are used as primary beams in combination with Staxo 100 and a Dokaplex intermediate sheet (size: 160 x 210 mm, thickness: 18 or 21 mm): 70 kN
- Permitted leg load where 2 Doka beams I tec 20 are used as primary beams in combination with Staxo 100 and an intermediate sheet of thickness t=8 mm: 80 kN

The intermediate sheets have to be secured so that they cannot drop down, for example with suitable lengths of adhesive tape.

NOTICE

- Secure the load-bearing tower against slippage and tipover, in all situations!
- Ensure that all loads are applied centrally!
Load-bearing tower Staxo 100

Component overview

<table>
<thead>
<tr>
<th>Article N°</th>
<th>Article N°</th>
<th>[kg]</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staxo 100 frame 0.90m</td>
<td>24.0</td>
<td>582302000</td>
<td>582300000</td>
</tr>
<tr>
<td>Staxo 100 frame 1.20m</td>
<td>28.0</td>
<td>582301000</td>
<td>582300000</td>
</tr>
<tr>
<td>Staxo 100 frame 1.80m</td>
<td>37.0</td>
<td>582300000</td>
<td>582300000</td>
</tr>
</tbody>
</table>

Galvanised

Delivery condition: folded closed

<table>
<thead>
<tr>
<th>Component</th>
<th>[kg]</th>
<th>Article N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagonal cross 9.060</td>
<td>3.1</td>
<td>582322000</td>
</tr>
<tr>
<td>Diagonal cross 9.100</td>
<td>4.1</td>
<td>582372000</td>
</tr>
<tr>
<td>Diagonal cross 9.150</td>
<td>5.2</td>
<td>582373000</td>
</tr>
<tr>
<td>Diagonal cross 9.175</td>
<td>6.1</td>
<td>582334000</td>
</tr>
<tr>
<td>Diagonal cross 9.200</td>
<td>6.6</td>
<td>582774000</td>
</tr>
<tr>
<td>Diagonal cross 9.250</td>
<td>7.7</td>
<td>582775000</td>
</tr>
<tr>
<td>Diagonal cross 9.300</td>
<td>9.0</td>
<td>582323000</td>
</tr>
<tr>
<td>Diagonal cross 12.060</td>
<td>4.0</td>
<td>582324000</td>
</tr>
<tr>
<td>Diagonal cross 12.100</td>
<td>4.6</td>
<td>582610000</td>
</tr>
<tr>
<td>Diagonal cross 12.150</td>
<td>5.7</td>
<td>582612000</td>
</tr>
<tr>
<td>Diagonal cross 12.175</td>
<td>6.3</td>
<td>582335000</td>
</tr>
<tr>
<td>Diagonal cross 12.200</td>
<td>6.9</td>
<td>582614000</td>
</tr>
<tr>
<td>Diagonal cross 12.250</td>
<td>8.3</td>
<td>582616000</td>
</tr>
<tr>
<td>Diagonal cross 12.300</td>
<td>9.3</td>
<td>582325000</td>
</tr>
<tr>
<td>Diagonal cross 18.100</td>
<td>6.1</td>
<td>582620000</td>
</tr>
<tr>
<td>Diagonal cross 18.150</td>
<td>6.9</td>
<td>582622000</td>
</tr>
<tr>
<td>Diagonal cross 18.175</td>
<td>7.8</td>
<td>582336000</td>
</tr>
<tr>
<td>Diagonal cross 18.200</td>
<td>7.8</td>
<td>582624000</td>
</tr>
<tr>
<td>Diagonal cross 18.250</td>
<td>9.1</td>
<td>582626000</td>
</tr>
<tr>
<td>Diagonal cross 18.300</td>
<td>10.3</td>
<td>582326000</td>
</tr>
</tbody>
</table>

4-way screw-jack head

<table>
<thead>
<tr>
<th>[kg]</th>
<th>Article N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4</td>
<td>582638000</td>
</tr>
</tbody>
</table>

Dokamatic table Staxo spindle connector

<table>
<thead>
<tr>
<th>[kg]</th>
<th>Article N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td>582347000</td>
</tr>
</tbody>
</table>

Screw jack U-head

<table>
<thead>
<tr>
<th>[kg]</th>
<th>Article N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>582363000</td>
</tr>
</tbody>
</table>

Heavy-duty screw jack 70 top

<table>
<thead>
<tr>
<th>[kg]</th>
<th>Article N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>582327000</td>
</tr>
</tbody>
</table>

Split nut B

<table>
<thead>
<tr>
<th>[kg]</th>
<th>Article N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>582634000</td>
</tr>
</tbody>
</table>

Clamping plate D

<table>
<thead>
<tr>
<th>[kg]</th>
<th>Article N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>502709030</td>
</tr>
</tbody>
</table>

Wing nut 15.0

<table>
<thead>
<tr>
<th>[kg]</th>
<th>Article N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.31</td>
<td>581961000</td>
</tr>
</tbody>
</table>

Locking rod 15.0 330mm

<table>
<thead>
<tr>
<th>[kg]</th>
<th>Article N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.48</td>
<td>582641000</td>
</tr>
</tbody>
</table>

Wedge for screw jack %

<table>
<thead>
<tr>
<th>[kg]</th>
<th>Article N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.46</td>
<td>176071000</td>
</tr>
</tbody>
</table>
Component overview

<table>
<thead>
<tr>
<th>Component Description</th>
<th>[kg]</th>
<th>Article No*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staxo 100 spindle adapter</td>
<td>3.4</td>
<td>582351000</td>
</tr>
<tr>
<td>Staxo 100-Spindeladapter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanised</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height: 26 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Super plate 15.0</td>
<td>1.1</td>
<td>581966000</td>
</tr>
<tr>
<td>Superplatte 15,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanised</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height: 6 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter: 12 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width-across: 27 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staxo wedge support WS10</td>
<td>8.7</td>
<td>582796000</td>
</tr>
<tr>
<td>Staxo-Keilaufügel WS10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanised</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height: 31 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width: 15 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height: 23 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staxo wedge support WU12/14</td>
<td>12.2</td>
<td>582350000</td>
</tr>
<tr>
<td>Staxo-Keilaufügel WU12/14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanised</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height: 35.6 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width: 15 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height: 33.6 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swivel bearing plate for screw jack U-head</td>
<td>5.2</td>
<td>582799000</td>
</tr>
<tr>
<td>Gelenkaufsatz Kopfspindel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanised</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height: 20.8 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width: 15.0 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height: 14.4 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexagon nut 15.0</td>
<td>0.23</td>
<td>581964000</td>
</tr>
<tr>
<td>Sechskantmutter 15,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanised</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height: 5 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width-across: 30 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screw jack foot</td>
<td>9.0</td>
<td>582637000</td>
</tr>
<tr>
<td>Fußspindel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanised</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height: 69 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy-duty screw jack 70</td>
<td>8.8</td>
<td>582639000</td>
</tr>
<tr>
<td>Lastspindel 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanised</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height: 101 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy-duty screw jack 130</td>
<td>13.0</td>
<td>582711000</td>
</tr>
<tr>
<td>Lastspindel 130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanised</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height: 173 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compensating plate</td>
<td>1.2</td>
<td>582239000</td>
</tr>
<tr>
<td>Ausgleichsplatte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter: 30 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staxo 100 single leg 0.90m</td>
<td>20.2</td>
<td>582305000</td>
</tr>
<tr>
<td>Staxo 100-Einzelstiel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanised</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height: 26 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staxo 100 single leg 1.20m</td>
<td>21.5</td>
<td>582304000</td>
</tr>
<tr>
<td>Staxo 100-Einzelstiel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanised</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height: 34 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staxo 100 single leg 1.80m</td>
<td>17.0</td>
<td>582303000</td>
</tr>
<tr>
<td>Staxo 100-Einzelstiel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanised</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height: 40 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doka floor prop Eurex 60 550</td>
<td>47.0</td>
<td>582650000</td>
</tr>
<tr>
<td>Doka-Deckenstütze Eurex 60 550</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length: 345 - 555 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension Eurex 60 2.00m</td>
<td>21.3</td>
<td>582651000</td>
</tr>
<tr>
<td>Verlängerung Eurex 60 2.00m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powder-coated blue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length: 250 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupler Eurex 60</td>
<td>8.6</td>
<td>582652000</td>
</tr>
<tr>
<td>Kupplungsstück Eurex 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length: 100 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter: 12.8 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Article N°</td>
<td>[kg]</td>
<td>Article N°</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>U-head Eurex 60 Galbelkopf Eurex 60</td>
<td>2.9</td>
<td>582656000</td>
</tr>
<tr>
<td>4-way head Eurex 60 Vierwegkopf Eurex 60</td>
<td>4.5</td>
<td>582655000</td>
</tr>
<tr>
<td>Plumbing strut Eurex 60 550 Justierstütze Eurex 60 550</td>
<td>42.5</td>
<td>582658000</td>
</tr>
<tr>
<td>Prop head Eurex 60 Top50 Stützenkopf Eurex 60 Top50</td>
<td>7.1</td>
<td>582665000</td>
</tr>
<tr>
<td>Connector Eurex 60 IB Verbindungsstück Eurex 60 IB</td>
<td>4.2</td>
<td>582657500</td>
</tr>
<tr>
<td>Plumbing strut shoe Eurex 60 EB Justierstützenfuß Eurex 60 EB</td>
<td>8.0</td>
<td>582660500</td>
</tr>
<tr>
<td>Swivel coupler 48mm Eurex 60 Dreikupplung 48mm Eurex 60</td>
<td>1.0</td>
<td>582654000</td>
</tr>
<tr>
<td>Plumbing strut 340 IB Justierstütze 340 IB</td>
<td>16.7</td>
<td>588696000</td>
</tr>
<tr>
<td>Plumbing strut 340 IB EF Justierstütze 340 IB EF</td>
<td>14.9</td>
<td>586247500</td>
</tr>
<tr>
<td>Plumbing strut 540 IB Justierstütze 540 IB</td>
<td>30.7</td>
<td>588697000</td>
</tr>
<tr>
<td>Plumbing strut 540 IB EF Justierstütze 540 IB EF</td>
<td>28.9</td>
<td>588250500</td>
</tr>
<tr>
<td>Strut shoe EB Strebenschuh EB</td>
<td>0.93</td>
<td>588946000</td>
</tr>
</tbody>
</table>
Load-bearing tower Staxo 100

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Article No.</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prop shoe EB</td>
<td>Stützenschuh EB</td>
<td>588245500</td>
<td>1.8</td>
</tr>
<tr>
<td>Universal dismantling tool</td>
<td>Universal-Lösewerkzeug</td>
<td>582768000</td>
<td>3.7</td>
</tr>
<tr>
<td>Removable folding tripod 1.20m</td>
<td>Stützbein 1,20m</td>
<td>586145000</td>
<td>20.7</td>
</tr>
<tr>
<td>Doka express anchor 16x125mm</td>
<td>Doka-Expressanker 16x125mm</td>
<td>588631000</td>
<td>0.31</td>
</tr>
<tr>
<td>Doka coil 16mm</td>
<td>Doka-Coil 16mm</td>
<td>588633000</td>
<td>0.009</td>
</tr>
<tr>
<td>Scaffold planking 30/100cm</td>
<td>Gerüstbelag</td>
<td>582231000</td>
<td>7.4</td>
</tr>
<tr>
<td>Scaffold planking 30/150cm</td>
<td></td>
<td>582232000</td>
<td>10.6</td>
</tr>
<tr>
<td>Scaffold planking 30/200cm</td>
<td></td>
<td>582234000</td>
<td>13.5</td>
</tr>
<tr>
<td>Scaffold planking 30/250cm</td>
<td></td>
<td>582235000</td>
<td>16.4</td>
</tr>
<tr>
<td>Scaffold planking 30/300cm</td>
<td></td>
<td>582236000</td>
<td>19.5</td>
</tr>
<tr>
<td>Scaffold planking 60/100cm with manhole</td>
<td>Gerüstbelag mit Durchstieg</td>
<td>582311500</td>
<td>9.5</td>
</tr>
<tr>
<td>Scaffold planking 60/150cm with manhole</td>
<td></td>
<td>582312500</td>
<td>13.8</td>
</tr>
<tr>
<td>Scaffold planking 60/200cm with manhole</td>
<td></td>
<td>582333500</td>
<td>15.5</td>
</tr>
<tr>
<td>Scaffold planking 60/250cm with manhole</td>
<td></td>
<td>582313500</td>
<td>17.7</td>
</tr>
<tr>
<td>Scaffold planking 60/300cm with manhole</td>
<td></td>
<td>582314500</td>
<td>20.8</td>
</tr>
<tr>
<td>Scaffold planking 60/350cm with manhole</td>
<td></td>
<td>582315500</td>
<td>26.3</td>
</tr>
<tr>
<td>Scaffold planking 60/400cm with manhole</td>
<td></td>
<td>582316500</td>
<td>31.1</td>
</tr>
<tr>
<td>Staxo 100 toeboard</td>
<td>Staxo-100-Fußwehr</td>
<td>582329000</td>
<td>5.5</td>
</tr>
<tr>
<td>Staxo 100 plank strut 1.00m</td>
<td>Staxo 100-Belagstrebe</td>
<td>582348000</td>
<td>6.1</td>
</tr>
<tr>
<td>Staxo 100 plank strut 1.50m</td>
<td></td>
<td>582349000</td>
<td>9.0</td>
</tr>
<tr>
<td>Staxo front railing</td>
<td>Staxo-Stirngeländer</td>
<td>582316000</td>
<td>10.5</td>
</tr>
<tr>
<td>Staxo side railing 100</td>
<td>Staxo-Seitengeländer</td>
<td>582317500</td>
<td>17.5</td>
</tr>
<tr>
<td>Staxo side railing 150</td>
<td></td>
<td>582318500</td>
<td>20.0</td>
</tr>
<tr>
<td>Staxo side railing 175</td>
<td></td>
<td>582331500</td>
<td>23.2</td>
</tr>
<tr>
<td>Staxo side railing 200</td>
<td></td>
<td>582319500</td>
<td>24.1</td>
</tr>
<tr>
<td>Staxo side railing 250</td>
<td></td>
<td>582320500</td>
<td>27.5</td>
</tr>
<tr>
<td>Staxo side railing 300</td>
<td></td>
<td>582321500</td>
<td>31.1</td>
</tr>
<tr>
<td>Spring locked connecting pin 16mm</td>
<td>Federbolzen 16mm</td>
<td>582528000</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Dimensions:
- **Prop shoe EB:**
 - Galvanised
 - Length: 20 cm
 - Width: 11 cm
 - Height: 10 cm
- **Universal dismantling tool:**
 - Galvanised
 - Length: 75.5 cm
- **Removable folding tripod 1.20m:**
 - Galvanised
 - Height: 120 cm
 - Delivery condition: folded closed
- **Doka express anchor 16x125mm:**
 - Galvanised
 - Length: 18 cm
 - Follow the directions in the "Fitting instructions!"
- **Doka coil 16mm:**
 - Galvanised
 - Diameter: 1.6 cm
- **Scaffold planking:**
 - Galvanised
- **Staxo 100 toeboard:**
 - Galvanised
 - Length: 131 cm
 - Height: 15 cm
- **Staxo 100 plank strut:**
 - Galvanised
 - Width-across: 22 mm
- **Staxo front railing:**
 - Galvanised
 - Length: 140 cm
 - Height: 152 cm
- **Staxo side railing:**
 - Galvanised
 - Height: 152 cm
Scaffold Tube 48.3mm

<table>
<thead>
<tr>
<th>Article N°</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>999804302</td>
<td>1.7</td>
</tr>
<tr>
<td>682026000</td>
<td></td>
</tr>
<tr>
<td>999804302</td>
<td>3.6</td>
</tr>
<tr>
<td>682014000</td>
<td></td>
</tr>
<tr>
<td>999804302</td>
<td>5.4</td>
</tr>
<tr>
<td>682015000</td>
<td></td>
</tr>
<tr>
<td>999804302</td>
<td>7.2</td>
</tr>
<tr>
<td>682016000</td>
<td></td>
</tr>
<tr>
<td>999804302</td>
<td>9.0</td>
</tr>
<tr>
<td>682017000</td>
<td></td>
</tr>
<tr>
<td>999804302</td>
<td>10.8</td>
</tr>
<tr>
<td>682018000</td>
<td></td>
</tr>
<tr>
<td>999804302</td>
<td>12.6</td>
</tr>
<tr>
<td>682019000</td>
<td></td>
</tr>
<tr>
<td>999804302</td>
<td>14.4</td>
</tr>
<tr>
<td>682021000</td>
<td></td>
</tr>
<tr>
<td>999804302</td>
<td>16.2</td>
</tr>
<tr>
<td>682022000</td>
<td></td>
</tr>
<tr>
<td>999804302</td>
<td>18.0</td>
</tr>
<tr>
<td>682023000</td>
<td></td>
</tr>
<tr>
<td>999804302</td>
<td>19.8</td>
</tr>
<tr>
<td>682024000</td>
<td></td>
</tr>
<tr>
<td>999804302</td>
<td>21.6</td>
</tr>
<tr>
<td>682025000</td>
<td></td>
</tr>
<tr>
<td>999804302</td>
<td>23.4</td>
</tr>
<tr>
<td>682001000</td>
<td></td>
</tr>
</tbody>
</table>

Galvanised

- Width-across: 22 mm
- Follow the directions in the "Fitting instructions!"

Handrail Clamp S

<table>
<thead>
<tr>
<th>Article N°</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>580470000</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Handrail Post T 1.80m

<table>
<thead>
<tr>
<th>Article N°</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>584373000</td>
<td>17.7</td>
</tr>
</tbody>
</table>

Handrail Clamp S

<table>
<thead>
<tr>
<th>Article N°</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>580470000</td>
<td></td>
</tr>
</tbody>
</table>

Handrail Post T 1.80m

<table>
<thead>
<tr>
<th>Article N°</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>584373000</td>
<td></td>
</tr>
</tbody>
</table>

Transition Swivel Coupler 48/76mm

<table>
<thead>
<tr>
<th>Article N°</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>582563000</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Swivel Coupler 48mm

<table>
<thead>
<tr>
<th>Article N°</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>582560000</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Normal Coupler 48mm

<table>
<thead>
<tr>
<th>Article N°</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>682004000</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Anchoring Shoe for Stair Tower

<table>
<thead>
<tr>
<th>Article N°</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>582680000</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Cone Screw B 7cm

<table>
<thead>
<tr>
<th>Article N°</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>581444000</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Rafter Plate Right

<table>
<thead>
<tr>
<th>Article N°</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>582521000</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Rafter Plate Left

<table>
<thead>
<tr>
<th>Article N°</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>582522000</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Handrail Post 1.50m

<table>
<thead>
<tr>
<th>Article N°</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>582754000</td>
<td>12.4</td>
</tr>
</tbody>
</table>

Staxo 100 Mounting Gallows 40kg

<table>
<thead>
<tr>
<th>Article N°</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>582328000</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Staxo 100 Hoisting Cable 40kg 30m

<table>
<thead>
<tr>
<th>Article N°</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>582346000</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Operating Instructions

- Galvanised
- Height: 123 - 171 cm

- Galvanised
- Height: 13.5 cm

- Galvanised
- Height: 7 cm

- Galvanised
- Height: 258 cm

For more information, follow the directions in the "Fitting instructions!"
Component overview

User Information

Load-bearing tower Staxo 100

<table>
<thead>
<tr>
<th>Article N°</th>
<th>[kg]</th>
<th>Article N°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staxo 100 attaching cable 40cm</td>
<td>0.31</td>
<td>582345000</td>
</tr>
<tr>
<td>Staxo 100-Anschlagseil 40cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracing for load-bearing towers</td>
<td>10.2</td>
<td>582795000</td>
</tr>
<tr>
<td>Abspannung für Traggerüste</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tie rod 15.0mm galvanised 0.50m</td>
<td>0.72</td>
<td>581821000</td>
</tr>
<tr>
<td>Tie rod 15.0mm galvanised 0.75m</td>
<td>1.1</td>
<td>581822000</td>
</tr>
<tr>
<td>Tie rod 15.0mm galvanised 1.00m</td>
<td>1.4</td>
<td>581823000</td>
</tr>
<tr>
<td>Tie rod 15.0mm galvanised 1.25m</td>
<td>1.8</td>
<td>581824000</td>
</tr>
<tr>
<td>Tie rod 15.0mm galvanised 1.50m</td>
<td>2.2</td>
<td>581825000</td>
</tr>
<tr>
<td>Tie rod 15.0mm galvanised 1.75m</td>
<td>2.5</td>
<td>581826000</td>
</tr>
<tr>
<td>Tie rod 15.0mm galvanised 2.00m</td>
<td>2.9</td>
<td>581827000</td>
</tr>
<tr>
<td>Tie rod 15.0mm galvanised 2.50m</td>
<td>3.6</td>
<td>581838000</td>
</tr>
<tr>
<td>Tie rod 15.0mm galvanisedm</td>
<td>1.4</td>
<td>581840000</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 0.50m</td>
<td>0.73</td>
<td>581870000</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 0.75m</td>
<td>1.1</td>
<td>581871000</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 1.00m</td>
<td>1.4</td>
<td>581872000</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 1.25m</td>
<td>1.8</td>
<td>581873000</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 1.50m</td>
<td>2.1</td>
<td>581874000</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 1.75m</td>
<td>2.5</td>
<td>581875000</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 2.00m</td>
<td>2.9</td>
<td>581876000</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 2.50m</td>
<td>3.6</td>
<td>581877000</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 3.00m</td>
<td>4.3</td>
<td>581878000</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 3.50m</td>
<td>5.0</td>
<td>581888000</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 4.00m</td>
<td>5.7</td>
<td>581879000</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 5.00m</td>
<td>7.2</td>
<td>581880000</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 6.00m</td>
<td>8.6</td>
<td>581881000</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treated 7.50m</td>
<td>10.7</td>
<td>581882000</td>
</tr>
<tr>
<td>Tie rod 15.0mm non-treatedm</td>
<td>1.4</td>
<td>581873000</td>
</tr>
<tr>
<td>Ankerstab 15,0mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bracing waling connector WS10</td>
<td>2.7</td>
<td>582756000</td>
</tr>
<tr>
<td>Abspann-Riegelverbinder WS10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spindle connecting plate T</td>
<td>3.1</td>
<td>584371000</td>
</tr>
<tr>
<td>Spindellasche T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecting pin 10cm</td>
<td>0.34</td>
<td>580201000</td>
</tr>
<tr>
<td>Verbindungbolzen 10cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring cotter 5mm</td>
<td>0.03</td>
<td>580204000</td>
</tr>
<tr>
<td>Federvorstecker 5mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary-beam stabiliser 1</td>
<td>1.6</td>
<td>586196000</td>
</tr>
<tr>
<td>Secondary-beam stabiliser 2</td>
<td>2.1</td>
<td>586197000</td>
</tr>
<tr>
<td>Lifting rod 15.0</td>
<td>1.9</td>
<td>586074000</td>
</tr>
<tr>
<td>Umsetzstab 15,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retaining plate 15.0</td>
<td>1.8</td>
<td>586073000</td>
</tr>
<tr>
<td>Jochplatte 15,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universal plug R20/25</td>
<td>0.003</td>
<td>588180000</td>
</tr>
<tr>
<td>Kombi-Ankerstopfen R20/25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupler WS10 250</td>
<td>6.9</td>
<td>582688000</td>
</tr>
<tr>
<td>Kupplungsstück WS10 250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winch 70</td>
<td>31.0</td>
<td>582779000</td>
</tr>
<tr>
<td>Zahnstangenwinde 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winch 125</td>
<td>63.8</td>
<td>582780000</td>
</tr>
<tr>
<td>Zahnstangenwinde 125</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
User Information

Load-bearing tower Staxo 100

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Article N°</th>
<th>[kg]</th>
<th>[kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staxo/d2 adapter frame</td>
<td>Staxo/d2-Adapter</td>
<td>582781000</td>
<td>14.1</td>
<td></td>
</tr>
<tr>
<td>Solid tire wheel</td>
<td>Vollelastikrad</td>
<td>582573000</td>
<td>34.5</td>
<td></td>
</tr>
<tr>
<td>Heavy-duty wheel 15kN</td>
<td>Schwerlastrad 15kN</td>
<td>582575000</td>
<td>33.0</td>
<td></td>
</tr>
<tr>
<td>Double wheeled transporter</td>
<td>Zweirad-Transportroller</td>
<td>582558000</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Shifting carriage TG</td>
<td>Hubwagen TG</td>
<td>582779000</td>
<td>168.0</td>
<td></td>
</tr>
<tr>
<td>Fork lift shifting device TG</td>
<td>Umsetzgerät TG für Stapler</td>
<td>582797000</td>
<td>83.0</td>
<td></td>
</tr>
<tr>
<td>Multi-purpose waling WS10 Top50 2.00m</td>
<td>Mehrzweckriegel WS10 Top50 2,00m</td>
<td>580007000</td>
<td>38.9</td>
<td></td>
</tr>
<tr>
<td>Screw-on coupler 48mm 50</td>
<td>Anschraubkupplung 48mm 50</td>
<td>682002000</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>Doka personal fall-arrest set</td>
<td>Doka-Auffanggurt</td>
<td>583022000</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>Doka load-bearing tower pallet</td>
<td>Doka-Traggerüstpalette</td>
<td>582783000</td>
<td>64.6</td>
<td></td>
</tr>
<tr>
<td>Doka skeleton transport box 1.70x0.80m</td>
<td>Doka-Gitterbox 1,70x0,80m</td>
<td>583012000</td>
<td>87.0</td>
<td></td>
</tr>
<tr>
<td>Doka multi-trip transport box 1.20x0.80m</td>
<td>Doka-Mehrwegcontainer 1,20x0,80m</td>
<td>583011000</td>
<td>70.0</td>
<td></td>
</tr>
<tr>
<td>Multi-trip transport box partition 0.80m</td>
<td>Mehrwegcontainer Unterteilung</td>
<td>583018000</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>Multi-trip transport box partition 1.20m</td>
<td>Mehrwegcontainer Unterteilung</td>
<td>583017000</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>Doka multi-trip transport box 1.20x0.80x0.41m</td>
<td>Doka-Mehrwegcontainer 1,20x0,80x0,41m</td>
<td>583009000</td>
<td>42.5</td>
<td></td>
</tr>
</tbody>
</table>

Multi-trip packaging

- **Doka personal fall-arrest set**
 - Doka-Auffanggurt
 - Follow the directions in the "Operating Instructions!"

- **Doka load-bearing tower pallet**
 - Doka-Traggerüstpalette
 - Galvanised
 - Length: 190 cm
 - Width: 120 cm
 - Height: 29 cm

- **Doka skeleton transport box 1.70x0.80m**
 - Doka-Gitterbox 1,70x0,80m
 - Galvanised
 - Height: 113 cm

- **Doka multi-trip transport box 1.20x0.80m**
 - Doka-Mehrwegcontainer 1,20x0,80m
 - Galvanised
 - Height: 78 cm

- **Multi-trip transport box partition 0.80m**
 - Steel parts galvanised
 - Timber parts varnished yellow

- **Doka multi-trip transport box 1.20x0.80x0.41m**
 - Doka-Mehrwegcontainer 1,20x0,80x0,41m
 - Galvanised
<table>
<thead>
<tr>
<th>Article N°</th>
<th>Load-bearing tower Staxo 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doka stacking pallet 1.55x0.85m</td>
<td>Galvanised Height: 77 cm</td>
</tr>
<tr>
<td>Article N°: 586151000</td>
<td>41.0</td>
</tr>
<tr>
<td>Doka stacking pallet 1.20x0.80m</td>
<td>Galvanised Height: 77 cm</td>
</tr>
<tr>
<td>Article N°: 583016000</td>
<td>38.0</td>
</tr>
<tr>
<td>Doka accessory box</td>
<td>Timber parts varnished yellow Steel parts galvanised Length: 154 cm Width: 83 cm Height: 77 cm</td>
</tr>
<tr>
<td>Article N°: 583010000</td>
<td>106.4</td>
</tr>
<tr>
<td>Bolt-on castor set B</td>
<td>Painted blue</td>
</tr>
<tr>
<td>Article N°: 586168000</td>
<td>33.6</td>
</tr>
</tbody>
</table>
Near to you, worldwide

Doka is one of the world leaders in developing, manufacturing and distributing formwork technology for use in all fields of the construction sector. With more than 160 sales and logistics facilities in over 70 countries, the Doka Group has a highly efficient distribution network which ensures that equipment and technical support are provided swiftly and professionally. An enterprise forming part of the Umdasch Group, the Doka Group employs a worldwide workforce of more than 6000.