The Formwork Experts.

Dokaflex S

User Information
Instructions for assembly and use
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Introduction</td>
</tr>
<tr>
<td>4</td>
<td>Basic safety warnings</td>
</tr>
<tr>
<td>8</td>
<td>System description</td>
</tr>
<tr>
<td>10</td>
<td>System logic for all floor-slabs up to 10” thick</td>
</tr>
<tr>
<td>11</td>
<td>Adaptability</td>
</tr>
<tr>
<td>12</td>
<td>Instructions for assembly and use</td>
</tr>
<tr>
<td>24</td>
<td>Structural design</td>
</tr>
<tr>
<td>26</td>
<td>Horizontal loads</td>
</tr>
<tr>
<td>28</td>
<td>Tie-back solutions</td>
</tr>
<tr>
<td>29</td>
<td>General remarks</td>
</tr>
<tr>
<td>29</td>
<td>Secondary-beam stabilizers</td>
</tr>
<tr>
<td>30</td>
<td>Combining Doka table systems</td>
</tr>
<tr>
<td>31</td>
<td>Tables around edges of slab</td>
</tr>
<tr>
<td>32</td>
<td>Safety railings</td>
</tr>
<tr>
<td>33</td>
<td>Doka service offerings</td>
</tr>
<tr>
<td>34</td>
<td>Shoring system, reshoring, concrete technology and stripping</td>
</tr>
<tr>
<td>36</td>
<td>Formwork planning with Tipos-Doka</td>
</tr>
<tr>
<td>37</td>
<td>Transporting, stacking and storing</td>
</tr>
<tr>
<td>42</td>
<td>Product overview</td>
</tr>
</tbody>
</table>
Introduction

Basic safety warnings

User target groups

▪ This booklet is aimed at all persons who will be working with the Doka product or system that it describes. It contains information on the standard design for setting up this system, and on correct, compliant utilization of the system.

▪ All persons working with the product described herein must be familiar with the contents of this booklet and with all the safety instructions it contains.

▪ Persons who are incapable of reading and understanding this booklet, or who can do so only with difficulty, must be instructed and trained by the customer.

▪ The customer is to insure that the information materials provided by Doka (e.g. User Information booklets, Method Statements, Operating Instruction manuals, plans etc.) are up to date and available to all users, and that users have been made aware of them and have easy access to them at the usage location.

▪ In the relevant technical documentation and formwork utilization plans, Doka shows the workplace safety precautions that are necessary in order to use the Doka products safely in the usage situations shown.

Hazard assessment

▪ The customer is responsible for drawing up, documenting, implementing and continually updating a hazard assessment at every job-site. This booklet serves as the basis for the site-specific hazard assessment, and for the instructions given to users on how to prepare and utilize the system. It does not substitute for these, however.

Remarks on this booklet

▪ This document can also be used as a generally valid set of Instructions for Assembly and Use (Method Statement), or it can be incorporated into a site-specific set of Instructions for Assembly and Use (Method Statement).

▪ The graphics in this document or app, and also the animations and videos, depict states of partial assembly in some instances and are therefore not always complete as regards their depiction of safety equipment and measures. Nevertheless, customer must ensure use in compliance with the applicable regulations of safety equipment possibly not shown in these graphics, animations and videos.

▪ The individual sections contain further safety instructions and special warnings as applicable.

Planning

▪ Provide safe workplaces for those using the formwork (e.g. for when it is being erected/dismantled, modified or repositioned etc). It must be possible to get to and from these workplaces via safe access routes!

▪ If you are considering any deviation from the details and instructions given in this booklet, or any application which goes beyond those described in the booklet, then revised static calculations must be produced for checking, as well as supplementary assembly instructions.

Regulations; occupational health & safety

▪ All laws, Standards, industrial safety regulations and other safety rules applying to the application and utilization of our products in the country and/or region in which you are operating must be observed at all times.

▪ If a person or object falls against, or into, the side-guard component and/or any of its accessories, the component affected may only continue in use after it has been inspected and passed by an expert.
Rules applying during all phases of the assignment:

▪ The customer shall ensure that this product is erected and dismantled, repositioned and generally used for its intended purpose in accordance with the applicable laws, standards and rules, under the direction and supervision of suitably skilled persons. These persons' mental and physical capacity shall not in any way be impaired by alcohol, medicines or drugs.

▪ Doka products are technical working appliances which are intended for industrial / commercial use only, always in accordance with the respective Doka User Information booklets or other technical documentation authored by Doka.

▪ The stability and load-bearing capacity of all components and units must be ensured during all phases of the construction work!

▪ Do not step on or apply strain to cantilevers, closures, etc. until suitable measures to ensure their stability have been correctly implemented (e.g. by tie-backs).

▪ The functional / technical instructions, safety warnings and loading data shall all be strictly observed and complied with. Non-compliance can cause accidents and severe injury (risk of fatality) and serious damage to property.

▪ Sources of fire in the vicinity of the formwork are prohibited. Heaters are permissible only when used correctly and situated a correspondingly safe distance from the formwork.

▪ Customer must give due consideration to any and all effects of the weather on the equipment and regards both its use and storage (e.g. slippery surfaces, risk of slipping, effects of the wind, etc.) and implement appropriate precautionary measures to secure the equipment and surrounding areas and to protect workers.

▪ All connections must be checked at regular intervals to ensure that they are secure and in full working order.

 In particular threaded connections and wedged connections have to be checked and retightened as necessary in accordance with activity on the jobsite and especially after out-of-the-ordinary occurrences (e.g. after a storm).

▪ It is strictly prohibited to weld or heat Doka products, particularly parts for anchoring, suspension or connecting, and also cast parts, etc.

 Welding radically changes the micro-structure of the materials of which these components are made. This leads to a drastic reduction in failure load, constituting a serious safety risk.

 It is permissible to cut individual tie rods to length with metal cutting discs (introduction of heat at the end of the rod only), but it is important to ensure that flying sparks do not heat and thus damage other tie rods.

 Welding work can be done only on the articles expressly mentioned in the Doka documents as being suitable for work of this nature.

Assembly

▪ The equipment/system must be inspected by the customer before use, to ensure that it is in suitable condition. Steps must be taken to rule out the use of any components that are damaged, deformed, or weakened due to wear, corrosion or rot.

▪ Combining our formwork systems with those of other manufacturers could be dangerous, risking damage to both health and property. If you intend to combine different systems, please contact Doka for advice first.

▪ The equipment/system must be assembled and erected in accordance with the applicable laws, Standards and rules by suitably skilled personnel of the customer's, having regard to any and all required safety inspections.

▪ It is not permitted to modify Doka products; any such modifications constitute a safety risk.

Erecting the formwork

▪ Doka products and systems must be set up in such a way that all loads acting upon them are safely transferred!

Pouring

▪ Do not exceed the permitted fresh-concrete pressures. Excessively high pouring rates lead to formwork overload, cause greater deflection and risk causing breakage.

Stripping the formwork

▪ Do not strip the formwork until the concrete has reached sufficient strength and the person in charge has given the order for the formwork to be stripped!

▪ When stripping the formwork, never use the crane to break concrete cohesion. Use suitable tools such as timber wedges, special pry-bars or system features such as Framax S bias-cut corners.

▪ When stripping the formwork, do not endanger the stability of any part of the structure, or of any scaffolding, platforms or formwork that is still in place!
Transporting, stacking and storing

- Observe all country-specific regulations applying to the handling of formwork and scaffolding. For system formwork the Doka slinging means stated in this booklet must be used – this is a mandatory requirement.

 If the type of sling is not specified in this booklet, the customer must use slinging means that are suitable for the application envisaged and that comply with the regulations.

- When lifting, always make sure that the unit to be lifted and its individual parts can absorb the forces that occur.

- Remove loose parts or secure them so that they cannot slip out of position and drop.

- All components must be stored safely, following all the special Doka instructions given in the relevant sections of this document!

Maintenance

- Only original Doka components may be used as spare parts. Repairs may only be carried out by the manufacturer or authorized facilities.

Miscellaneous

The weights are averages on the basis of new material. Actual weights can vary due to material tolerances. Weights can also differ on account of dirtying, moisture absorption, etc.

We reserve the right to make alterations in the interests of technical progress.

Symbols

The following symbols are used in this document:

- **DANGER**
 This is a notifier drawing attention to an extremely dangerous situation in which non-compliance with this notifier will lead to death or severe, irreversible injury.

- **WARNING**
 This is a notifier drawing attention to a dangerous situation in which non-compliance with this notifier can lead to death or severe, irreversible injury.

- **CAUTION**
 This is a notifier drawing attention to a dangerous situation in which non-compliance with this notifier can lead to slight, reversible injury.

- **NOTE**
 This is a notifier drawing attention to a situation in which non-compliance with this notifier can lead to malfunctions or damage to property.

- **Instruction**
 Indicates that actions have to be performed by the user.

- **Visual inspection**
 Indicates that actions performed must be checked by means of a visual inspection.

- **Tip**
 Draws attention to a useful tip for best-practice usage.

- **Reference**
 Cross-references other documents.
System description

Dokaflex S - the versatile hand-set system for floor-slabs

Dokaflex S can easily be adapted to fit any layout, simply by telescoping the Doka H20 top beams.
- no structural-design work is needed, as Dokaflex S shows you the maximum spacings for all slabs up to 18” thick
- you can tell at a glance whether the formwork has been set up correctly

Further advantages:
- infill zones are managed within the system, making it easy to adapt to walls and columns
- for shoring-heights of up to 18’-0”
- any type of form-facing can be used
- no need to measure

Dokaflex S is ideal for enclosed spaces where the formwork superstructure can be braced against walls on all sides. Horizontal forces at exposed slab-edges, downturned beams or steps in ceiling slabs shall be transmitted by bracing or tie-backs.

Small number of system components - all perfectly co-ordinated

A Structural 1 plyform 3/4”
B Doka beam H20 top P
C Lowering head H20
D Supporting head H20 DF
E Doka floor props Eurex 30 top
F Removable folding tripod top
G Bracing frame Eurex 4’-0” (1.22m)
H Diagonal cross 18.200
(B) Doka beams H20 top P 16'-0" and 11'-6"

- easy-to-distinguish primary beams (16'-0") and secondary beams (11'-6")
- integrated shock absorbers at the beam ends for less damage and long service life
- pre-defined positioning points as reference marks for setting-up and checking the formwork

Follow the directions in the 'Timber formwork beams' User Information booklet!

(C) Lowering head H20

- integrated quick-lowering function for minimizing damage during stripping
- stabilizes the stringers so that these cannot tip over on their sides

(D) Supporting head H20 DF

- easy to install on the floor prop
- for fixing intermediate props to the primary beam

(E) Doka floor props Eurex

EN 1065, ACI and CSA-compliant floor prop

<table>
<thead>
<tr>
<th>Type of Doka floor prop</th>
<th>Permitted capacity to US standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eurex 20</td>
<td>6.0 kip (6000 lbs)</td>
</tr>
<tr>
<td>Eurex 30</td>
<td>8.5 kip (8500 lbs)</td>
</tr>
</tbody>
</table>

Their high load-bearing capacity is complemented by many practical details making them very easy to handle:

- numbered pegging holes for easier height adjustment
- elbowed fastening clamps, reducing the risk of injury and making the props easier to operate
- special thread geometry makes the props easier to back off even under high load

Follow the directions in the 'Doka floor props Eurex' User Information booklet!

Note:
The floor props can be lengthened with the Floor prop extension 0.50m (allow for the reduced load-bearing capacity).

(F) Removable folding tripod top

The removable folding tripod provides sufficient bracing while the floor props, primary beams and secondary beams are being set up in situations where the formwork superstructure is braced by walls on all sides.

- Set-up aid for floor props
- swing-out legs offer flexibility for placement where space is at a premium, for example close to walls and in corners

Note:
Not suitable for sustaining horizontal loads during pouring.

(G) Bracing frame Eurex 4'-0" (1.22m) + (H) Diagonal cross 18.200

Bracing frames 4'-0" (1.22m) are joined with diagonal crosses to make a bracing tower.

- diagonal crosses are easy to attach, with safety catches

On exposed slab-edges, two bracing towers are used to create a stable staging area:

- for setting up the formwork safely beside exposed slab-edges
- for creating a stable placement area on which the stacks of plyform sheets needed for formwork set-up can safely be placed

Note:
Not suitable for sustaining horizontal loads during pouring.
System logic for all floor-slabs up to 10" thick

Spacing and positions of the component parts

No matter whether the beams are resting on, between or next to the marks, the maximum spacing is always plain to see. You can tell at a glance whether the formwork has been erected correctly, and without having to do any measuring.

1 mark = 4'-0"
- max. spacing of props
2 marks = 8'-0"
- max. spacing of stringers

A Mark

Stringers and joists

The 16'-0" long **Doka beam H20 top P** is used as a **stringer**, and the 11'-6" long H20 top P beam as a **joist**.

Format of the formwork sheets

Standard 4'-0" x 8'-0" format sheets have just the right dimensions to fit exactly into the increment-grid of the Dokaflex S system.
Adaptability

Fillers and adjustments

Infill zones are solved within the system - with no special accessories needed. The necessary adaptation is made by overlapping the Doka beams and inserting strips of formwork sheeting.

Grid and flexibility - in one system

Dokaflex S also adapts to difficult layouts.

NOTICE

The grain of the face layer (A) must run at right angles to the supports (B).
Setting up the formwork in enclosed rooms

NOTICE

➤ When setting up the floor prop, make sure that the fastening clamp is pushed all the way into the floor prop.
➤ Turn the adjusting nut until it is in contact with the fastening clamp.

Setting up the floor props

➤ System logic for all floor-slabs up to 10" thick: Lay the primary beams and secondary beams down on the ground, along the walls. The marks on the beams show you the maximum spacings:
- 2 marks for primary beams
- 3 marks for props with removable folding tripods (final prop spacing after installation of the intermediate props - 1 mark)
➤ If spacing is in accordance with the information in the section headed ‘Structural design’: Measure out to ensure correct positioning of the floor props.
➤ Roughly adjust the height of the floor prop, using the fastening clamp.

NOTICE

➤ When setting up the floor prop, make sure that the fastening clamp is pushed all the way into the floor prop.
➤ Turn the adjusting nut until it is in contact with the fastening clamp.

NOTICE

It is essential to follow the instructions given here and the instructions in the section headed ‘Shoring system, reshoring, concrete technology and stripping’.

NOTICE

Windproofing

▪ For increased stability, in larger rooms, the full erection sequence of primary beams + secondary beams + formwork sheets should be carried out progressively for successive sub-areas of the room. When doing this, provide suitable bracing to existing parts of the structure (e.g. walls or columns).
▪ If there is any risk of the formwork being blown over, all free-standing, non-enclosed areas of slab formwork shall be secured during work-breaks and when work finishes for the day.

CAUTION

➤ If you do transport the floor props with the lowering heads still attached, secure the heads with Spring-locked connecting pins 16 mm to prevent them dropping out. This is particularly important when they are transported in the horizontal.
➤ Insert a Lowering head H20 into the floor prop. Leave the correct amount of lowering play (a)!

Clearance a between wedge and head-plate:

2 1/4”
➤ Set up each removable folding tripod.

NOTICE
➤ Do not oil or grease wedge-clamped joints.

➤ Put the floor prop into the tripod and fix it in place with the clamping lever.
Before anybody steps onto the formwork, check again to make sure that the props have been correctly secured.

Setting up tripods in corners or against walls

If it is not possible to completely unfold the legs of the tripod – e.g. at the edges of a structure or at floor breakthroughs etc. – we recommend fastening this tripod to an adjacent floor prop instead, where there is room for the legs to be completely unfolded.

The lowering heads that will be under the primary beams next to the walls must be turned inwards so that they can be knocked undone when the time comes to take down the formwork.

Inserting the primary beams

The lowering heads can hold both single beams (on edge-of-room props) and double beams (at overlaps).

WARNING
Loads that are applied non-centrally can cause overloading of the system.
➤ Ensure that all loads are applied centrally!

➤ Using beam-forks, place the primary beams into the lowering heads.

➤ Adjust the primary beams to the correct floor-slab height.

- Lumber can be attached to the floor props as diagonal braces, using the Bracing clamp B.
- Bracing frame Eurex 4'-0" (1.22m) can also be used as a set-up aid.
Placing the secondary beams

➤ Use the beam forks to place the secondary beams in position, with an overlap.

Maximum center-to-center spacing of secondary beams: 19,2" (if permissible - see the section headed ‘Structural design’)

Place a beam (or double beam) wherever there is to be a joint between the panels.

Installing the intermediate props

NOTICE

➤ Install the intermediate props so that they force-fit. It is not allowed to make some props higher than others!

➤ Place the Supporting head H20 DF on the inside tube of the floor prop and secure it with the integral spring-steel stirrup.

➤ Install the intermediate props.

A Supporting head H20 DF
B Doka beam H20
C Hole in the supporting head
(for fixing with double-headed nails 6d)

Maximum spacing of the props: 1 mark
Laying the plywood sheets

To prevent the secondary beams tipping on their sides while the sheets are being laid on them, Secondary-beam stabilizers can be used.

WARNING

- Before anybody steps onto the surface of the slab formwork, its stability must be ensured (for example with Bracing frames Eurex, bracing or tie-backs).
- It is not permitted to set down loads on the floor-slab formwork (e.g. beams, formwork sheets, reinforcement steel) until after the intermediate props have been set up and adequate stability has been established!
- Transfer of horizontal loads must be ensured by other measures (e.g. by transferring these loads into the structure or using tie-backs or bracing). Follow the instructions in the section headed ‘Horizontal loads during pouring’.

NOTICE

- Use personal fall-arrest systems to protect against fall hazards when working on unsecured slab-edges (e.g. Doka personal fall-arrest set).

- Lay the plywood sheets. (grain at right angles to the secondary beams)

- Where necessary (e.g. edge zones), secure the form-ply with 6d nails.
Setting up the formwork in open rooms

NOTICE
It is essential to follow the instructions given here and the instructions in the section headed "Shoring system, reshoring, concrete technology and stripping".

NOTICE
Windproofing
- For increased stability, in larger rooms, the full erection sequence of primary beams + secondary beams + formwork sheets should be carried out progressively for successive sub-areas of the room. When doing this, provide suitable bracing to existing parts of the structure (e.g. walls or columns).
- If there is any risk of the formwork being blown over, all free-standing, non-enclosed areas of slab formwork shall be secured during work-breaks and when work finishes for the day.

Pre-assembling cells

On exposed slab-edges, two bracing towers are used to create a stable staging area:
- for setting up the formwork safely beside exposed slab-edges
- for creating a stable placement area on which the stacks of plywood sheets needed for formwork set-up can safely be placed

NOTICE
- Always set up the bracing frames such that the end with the two safety catches (D) and (E) is at the bottom.
- Join the two frames with diagonal crosses at top and bottom.

Set up the second bracing tower in the same way, a suitable distance from the first one.

Max. area of formwork per staging area: 1000 ft²

Note:
The horizontal forces occurring during pouring have to be transferred by bracing or tie-backs. If this bracing is attached before the formwork sheets are laid on the beams, only one staging area is needed at the start of formwork set-up.
Setting up the floor props

➤ Roughly adjust the height of the floor prop, using the fastening clamp.

The holes are all numbered, which makes it easier to adjust the props to the same height.

CAUTION
➤ If you do transport the floor props with the lowering heads still attached, secure the heads with Spring-locked connecting pins 16 mm to prevent them dropping out. This is particularly important when they are transported in the horizontal.

➤ Insert a Lowering head H20 into the floor prop. Leave the correct amount of lowering play (a)!

NOTICE
➤ Do not oil or grease wedge-clamped joints.

➤ Secure the floor prop to the bracing frame with the quick-fixing mechanism. Before anybody steps onto the formwork, check again to make sure that the props have been correctly secured.

Do not adjust the inside props to the right height until the primary beams have been laid in place.

This staging area can withstand vertical and horizontal loads corresponding to the loads imposed by two persons and one stack of formwork sheets.

➤ Position the removable folding tripod outside the staging area.

➤ Put the floor prop into the tripod and fix it in place with the clamping lever. Before anybody steps onto the formwork, check again to make sure that the props have been correctly secured.

Setting up tripods in corners or against walls

If it is not possible to completely unfold the legs of the tripod – e.g. at the edges of a structure or at floor breakthroughs etc. – we recommend fastening this tripod to an adjacent floor prop instead, where there is room for the legs to be completely unfolded.
Inserting the primary beams

The lowering heads can hold both single beams (on edge-of-room props) and double beams (at overlaps).

➤ Using beam-forks, place the primary beams into the lowering heads.

➤ Adjust the primary beams to the correct floor-slab height.

➤ Adjust the inside props on the bracing frames to the right height.

WARNING
Loads that are applied non-centrally can cause overloading of the system.
➤ Ensure that all loads are applied centrally!

▪ Lumber can be attached to the floor props as diagonal braces, using the Bracing clamp B.
▪ Bracing frame Eurex 4'-0" (1.22m) can also be used as a set-up aid.
Placing the secondary beams

➤ Use the beam forks to place the secondary beams in position, with an overlap.

Maximum center-to-center spacing of secondary beams: 19.2” (if permissible - see the section headed “Structural design”)

Place a beam (or double beam) wherever there is to be a joint between the panels.

Installing the intermediate props

➤ Install the intermediate props so that they force-fit. It is not allowed to make some props higher than others!

➤ Place the Supporting head H20 DF on the inside tube of the floor prop and secure it with the integral spring-steel stirrup.

➤ Install the intermediate props.

A Supporting head H20 DF
B Doka beam H20
C Hole in the supporting head
(for fixing with double-headed nails 6d)

Maximum spacing of the props: 1 mark
Instructions for assembly and use

Installing the bracing

Horizontal forces at exposed slab-edges, downturned beams or steps in ceiling slabs must be restrained by bracing or tie-backs.

➤ Fix rough-cut 1"x4" or 2"x4" lumber to the floor props using Bracing clamps B.

The lumber must be arranged at a 30° angle to the previously cast slab. The top end of the plank must be pointing towards the edge of the floor-slab.

Laying the plywood sheets

To prevent the secondary beams tipping on their sides while the sheets are being laid on them, Secondary-beam stabilizers can be used.

➤ Lay the plywood sheets. (grain at right angles to the secondary beams)

➤ Install guard rails around all exposed edges.

➤ Spray the plywood sheets with release agent.

WARNING

➤ Before anybody steps onto the surface of the slab formwork, its stability must be ensured (for example with Bracing frames Eurex, bracing or tie-backs).

➤ It is not permitted to set down loads on the floor-slab formwork (e.g. beams, formwork sheets, reinforcement steel) until after the intermediate props have been set up and adequate stability has been established!

➤ Transfer of horizontal loads must be ensured by other measures (e.g. by transferring these loads into the structure or using tie-backs or bracing). Follow the instructions in the section headed 'Horizontal loads during pouring'.

NOTICE

➤ Use personal fall-arrest systems to protect against fall hazards when working on unsecured slab-edges (e.g. Doka personal fall-arrest set).

➤ Lay the plywood sheets. (grain at right angles to the secondary beams)

➤ Install guard rails around all exposed edges.

➤ Spray the plywood sheets with release agent.

<table>
<thead>
<tr>
<th>❗️ WARNING</th>
<th>❗️ WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤ Before anybody steps onto the surface of the slab formwork, its stability must be ensured (for example with Bracing frames Eurex, bracing or tie-backs).</td>
<td>➤ Before anybody steps onto the surface of the slab formwork, its stability must be ensured (for example with Bracing frames Eurex, bracing or tie-backs).</td>
</tr>
<tr>
<td>➤ It is not permitted to set down loads on the floor-slab formwork (e.g. beams, formwork sheets, reinforcement steel) until after the intermediate props have been set up and adequate stability has been established!</td>
<td>➤ It is not permitted to set down loads on the floor-slab formwork (e.g. beams, formwork sheets, reinforcement steel) until after the intermediate props have been set up and adequate stability has been established!</td>
</tr>
<tr>
<td>➤ Transfer of horizontal loads must be ensured by other measures (e.g. by transferring these loads into the structure or using tie-backs or bracing). Follow the instructions in the section headed ‘Horizontal loads during pouring’.</td>
<td>➤ Transfer of horizontal loads must be ensured by other measures (e.g. by transferring these loads into the structure or using tie-backs or bracing). Follow the instructions in the section headed ‘Horizontal loads during pouring’.</td>
</tr>
</tbody>
</table>
Use at high floor-to-slab heights

WARNING
Stacked Dokaflex configurations lack stability! Stacked Dokaflex can lead to collapse and consequently these configurations are prohibited. Connecting floor props one on top of another is also prohibited.

➤ Use floor props of adequate length or load-bearing towers are propping.
Pouring

➤ Before pouring, check the floor props once again.

The fastening clamp must be checked to ensure its fully inserted into the floor prop until it stops moving in the direction of the arrow.

To protect the surface of the form-facing, we recommend using a vibrator with a protective rubber cap.

Stripping the formwork

NOTICE
Observe the stipulated stripping times.

Concremote provides reliable, standards-compliant information on the strength development of concrete on the site, in real-time.

Follow the directions in the ‘Concremote’ User Information booklet.

Note:
For further information, see the section headed ‘Shoring system, reshoring, concrete technology and stripping’.

Lowering the floor-slab formwork

NOTICE
The basic rule is:

➤ Stress-release the floor props row by row.
➤ Stress-release shall always be carried out working from one side toward the other, or from the middle of the floor-slab (mid-span) toward the slab edges.

It is imperative to adopt this procedure for wide spans!

➤ Do not under any circumstances attempt stress release from both sides toward the middle!

Stress-releasing the first row

➤ Remove the intermediate props and put them in the stacking pallet.

Stress-releasing next rows

➤ Stress-release the next rows one after the other in the same way.
Removing parts that are no longer needed

➤ Turn the secondary beams on to their sides, pull them out and put them in the stacking pallet.

➤ Leave enough beams in position to secure the plywood sheets.

➤ Remove the plywood sheets and put them in the stacking pallet.

➤ Remove the remaining secondary beams and the primary beams, and put them in the stacking pallet.

Removing the floor props

1) Take a firm grip on the inner tube with one hand.
2) Open the fastening clamp to release the inner tube. Guide the inner tube into the fixed tube with your hand.

➤ Put the removable folding tripods and floor props in the stacking pallet.

—it is better to transport the floor props and the lowering heads separately (the floor props on their own can be stored much more space-savingly in the stacking pallet).

Reshoring

➤ Before pouring the next floor-slab (i.e. above the one that has just been stripped), install reshoring props.

Note:
For further information (number of props etc.), see the section headed “Shoring system, reshoring, concrete technology and stripping”.
Structural design

The data-tables make allowance for the following:
- service load and weight of formwork: 50 psf
- max. mid-span deflection: l/360 or 1/4”
 (without service load)
- 2.5:1 safety factor

Dokaflex S data-table for interior application

For slab thicknesses greater than 18”, consult your Doka technician.

Timber formwork beams H20

<table>
<thead>
<tr>
<th>Slab thickness [inches]</th>
<th>Joist spacing of sanded grades of Group 1 plywood face grain parallel to span</th>
<th>Max. permitted spacing of props for a pre-selected stringer-spacing of 5/8”</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6”</td>
<td>7”</td>
</tr>
<tr>
<td>Slab thickness [inches]</td>
<td>6”</td>
<td>19.2”</td>
</tr>
<tr>
<td></td>
<td>7”</td>
<td>19.2”</td>
</tr>
<tr>
<td></td>
<td>7½”</td>
<td>19.2”</td>
</tr>
<tr>
<td></td>
<td>8”</td>
<td>19.2”</td>
</tr>
<tr>
<td></td>
<td>9”</td>
<td>19.2”</td>
</tr>
<tr>
<td></td>
<td>10”</td>
<td>19.2”</td>
</tr>
<tr>
<td></td>
<td>10½”</td>
<td>19.2”</td>
</tr>
<tr>
<td></td>
<td>12”</td>
<td>19.2”</td>
</tr>
<tr>
<td></td>
<td>13”</td>
<td>19.2”</td>
</tr>
<tr>
<td></td>
<td>14½”</td>
<td>16.0”</td>
</tr>
<tr>
<td></td>
<td>15”</td>
<td>16.0”</td>
</tr>
<tr>
<td></td>
<td>16”</td>
<td>16.0”</td>
</tr>
<tr>
<td></td>
<td>18”</td>
<td>12.0”</td>
</tr>
</tbody>
</table>

1) max. spacing of joists 16”
Dokaflex S data-table for perimeter application with stringers perpendicular to slab edge

For slab thicknesses greater than 18”, consult your Doka technician.

<table>
<thead>
<tr>
<th>Slab thickness [inch]</th>
<th>Solution for perimeter application for a pre-selected primary-beam spacing of</th>
</tr>
</thead>
<tbody>
<tr>
<td>6"</td>
<td>6'-0" 6'-6" 7'-0" 7'-6" 8'-0" 8'-6" 9'-0" 9'-6" 10'-0"</td>
</tr>
<tr>
<td>7"</td>
<td>S1 S1 S1 S1 S2 S7</td>
</tr>
<tr>
<td>7 1/2"</td>
<td>S1 S1 S1 S1 S2 S3 S7</td>
</tr>
<tr>
<td>8"</td>
<td>S1 S1 S1 S1 S2 S3 S6</td>
</tr>
<tr>
<td>9"</td>
<td>S1 S1 S1 S1 S2 S3 S4 S6</td>
</tr>
<tr>
<td>10"</td>
<td>S1 S1 S1 S2 S3 S4 S4 S6</td>
</tr>
<tr>
<td>10 1/2"</td>
<td>S1 S1 S1 S2 S3 S4 S4</td>
</tr>
<tr>
<td>12"</td>
<td>S1 S2 S3 S4 S4 S4</td>
</tr>
<tr>
<td>12 1/2"</td>
<td>S1 S2 S3 S4 S5</td>
</tr>
<tr>
<td>13"</td>
<td>S1 S3 S4 S5 S4</td>
</tr>
<tr>
<td>14 1/2"</td>
<td>S1 S3 S4 S5 S4</td>
</tr>
<tr>
<td>15"</td>
<td>S1 S4 S5 S4 S4</td>
</tr>
<tr>
<td>16"</td>
<td>S1 S4 S5 S4 S4</td>
</tr>
<tr>
<td>18"</td>
<td>S1 S4 S5 S4 S4</td>
</tr>
</tbody>
</table>

For the sake of more clarity, all the requirements relating to bracing are not included here. Contractor shall provide bracing or tie-backs as required for horizontal loads. Observe the instructions given in the section headed 'Horizontal loads'.

Perimeter application with stringers parallel to slab edge

For slab thicknesses greater than 12”, consult your Doka technician.

For the sake of more clarity, all the requirements relating to bracing are not included here. Contractor shall provide bracing or tie-backs as required for horizontal loads. Observe the instructions given in the section headed 'Horizontal loads'.

| a ... 2'-6" |
| b ... 6" |
| c ... 9" |
| d ... 8'-0" |

A Lashing strap 5.00m
B Doka beam H20 top P 16'-0"
D Diagonal cross 18.200

For the sake of more clarity, all the requirements relating to bracing are not included here. Contractor shall provide bracing or tie-backs as required for horizontal loads. Observe the instructions given in the section headed 'Horizontal loads'.

<table>
<thead>
<tr>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>2'-6"</td>
<td>4'-0"</td>
<td>4'-0"</td>
</tr>
<tr>
<td>S2</td>
<td>3'-0"</td>
<td>4'-0"</td>
<td>3'-6"</td>
</tr>
<tr>
<td>S3</td>
<td>2'-0"</td>
<td>3'-6"</td>
<td>4'-0"</td>
</tr>
<tr>
<td>S4</td>
<td>2'-0"</td>
<td>3'-4"</td>
<td>2'-6"</td>
</tr>
<tr>
<td>S5</td>
<td>1'-3"</td>
<td>3'-3"</td>
<td>1'-7"</td>
</tr>
<tr>
<td>S6</td>
<td>1'-9"</td>
<td>3'-6"</td>
<td>2'-7"</td>
</tr>
<tr>
<td>S7</td>
<td>1'-6"</td>
<td>3'-9"</td>
<td>2'-7"</td>
</tr>
</tbody>
</table>
Horizontal loads

During pouring

Using Dokaflex S on edge zones

If no separate edge tables are available, the following points shall be taken into account when Dokaflex S is used:

▪ Horizontal forces shall be transferred by means of bracing or tie-backs, and can also be transferred into existing parts of the structure, such as concrete columns or walls.
▪ A force-locked superstructure is necessary in order for the horizontal forces to be transferred.

Note:
At center-to-center distances of 16’ or less between concrete columns, bracing is not necessary if the horizontal forces are transferred to existing parts of the structure.

WARNING
➤ Secure cantilevering slab formwork to prevent lift-out and tipover.
➤ Secondary beams with stop-end formwork must be secured against horizontal pull-out.

Lumber can be attached to the floor props as diagonal braces, using the Bracing clamp B.

NOTICE
Always hammer in the wedge from top to bottom!

Use of bracing chart

1. For influence widths not shown and are within the range of the chart, interpolation of the values for influence width can be used. The values for “a” are for reference lines along a single row of stringer or joists and the values for “c” are along a single reference line for structural column grid line.
2. Values for “b” are along a reference line without any structural columns and values for “d” are along a reference lines within existing structural columns.
3. Choose the row in the chart with the corresponding slab thickness. The “b” value shown within this row indicates the spacing of bracing along a stringer or joist reference line for the full influence width that can resist horizontal forces.
4. Then choose the appropriate dimension for the width of the structural column that is parallel to the slab edge. The “d” values shown within the row indicate the maximum allowable spacing between structural columns for the full influence width of the reference line that can resist horizontal loads by transferring these forces into the existing structural column.
5. For structural column widths not shown in chart, choose next smaller structural column width.
Bracing table (see note on page 26):

<table>
<thead>
<tr>
<th>Slab thickness</th>
<th>Influence width (a or c) 16'</th>
<th>12'</th>
<th>8'</th>
</tr>
</thead>
<tbody>
<tr>
<td>6" Bracing '1'</td>
<td>b = 24' b = 32' b = 48'</td>
<td>d = 48' d = 64' d = 96'</td>
<td>d = 56' d = 76' d = 116'</td>
</tr>
<tr>
<td>Width of the concrete column parallel to the slab edge:</td>
<td>10'</td>
<td>12'</td>
<td>14'</td>
</tr>
<tr>
<td>b = 20' b = 24' b = 32'</td>
<td>d = 20' d = 32' d = 64'</td>
<td>d = 28' d = 40' d = 64'</td>
<td>d = 36' d = 48' d = 96'</td>
</tr>
<tr>
<td>8" Bracing '1'</td>
<td>b = 16' b = 24' b = 36'</td>
<td>d = 30' d = 40' d = 80'</td>
<td>d = 36' d = 48' d = 96'</td>
</tr>
<tr>
<td>Width of the concrete column parallel to the slab edge:</td>
<td>10'</td>
<td>12'</td>
<td>14'</td>
</tr>
<tr>
<td>b = 14' b = 20' b = 32'</td>
<td>d = 24' d = 32' d = 64'</td>
<td>d = 32' d = 52' d = 96'</td>
<td>d = 40' d = 56' d = 112'</td>
</tr>
<tr>
<td>9" Bracing '1'</td>
<td>b = 12' b = 16' b = 24'</td>
<td>d = 28' d = 40' d = 64'</td>
<td>d = 36' d = 56' d = 96'</td>
</tr>
<tr>
<td>Width of the concrete column parallel to the slab edge:</td>
<td>10'</td>
<td>12'</td>
<td>14'</td>
</tr>
<tr>
<td>b = 12' b = 18' b = 32'</td>
<td>d = 32' d = 40' d = 64'</td>
<td>d = 40' d = 64' d = 96'</td>
<td>d = 52' d = 76' d = 112'</td>
</tr>
<tr>
<td>10" Bracing '1'</td>
<td>b = 12' b = 24' b = 36'</td>
<td>d = 40' d = 64' d = 96'</td>
<td>d = 52' d = 76' d = 112'</td>
</tr>
<tr>
<td>Width of the concrete column parallel to the slab edge:</td>
<td>10'</td>
<td>12'</td>
<td>14'</td>
</tr>
<tr>
<td>b = 10' b = 18' b = 32'</td>
<td>d = 36' d = 48' d = 64'</td>
<td>d = 44' d = 66' d = 104'</td>
<td>d = 56' d = 76' d = 116'</td>
</tr>
<tr>
<td>12" Bracing '1'</td>
<td>b = 10' b = 16' b = 24'</td>
<td>d = 40' d = 60' d = 96'</td>
<td>d = 52' d = 80' d = 120'</td>
</tr>
<tr>
<td>Width of the concrete column parallel to the slab edge:</td>
<td>10'</td>
<td>12'</td>
<td>14'</td>
</tr>
<tr>
<td>b = 10' b = 16' b = 32'</td>
<td>d = 40' d = 60' d = 96'</td>
<td>d = 52' d = 80' d = 120'</td>
<td>d = 60' d = 96' d = 144'</td>
</tr>
<tr>
<td>14" Bracing '1'</td>
<td>b = 10' b = 16' b = 32'</td>
<td>d = 40' d = 60' d = 96'</td>
<td>d = 52' d = 80' d = 120'</td>
</tr>
<tr>
<td>Width of the concrete column parallel to the slab edge:</td>
<td>10'</td>
<td>12'</td>
<td>14'</td>
</tr>
<tr>
<td>b = 10' b = 12' b = 28'</td>
<td>d = 40' d = 60' d = 96'</td>
<td>d = 52' d = 80' d = 120'</td>
<td>d = 64' d = 96' d = 144'</td>
</tr>
<tr>
<td>16" Bracing '1'</td>
<td>b = 8' b = 16' b = 24'</td>
<td>d = 30' d = 44' d = 72'</td>
<td>d = 40' d = 64' d = 96'</td>
</tr>
<tr>
<td>Width of the concrete column parallel to the slab edge:</td>
<td>10'</td>
<td>12'</td>
<td>14'</td>
</tr>
<tr>
<td>b = 10' b = 12' b = 28'</td>
<td>d = 36' d = 48' d = 72'</td>
<td>d = 52' d = 80' d = 120'</td>
<td>d = 64' d = 96' d = 144'</td>
</tr>
<tr>
<td>18" Bracing '1'</td>
<td>b = 8' b = 12' b = 20'</td>
<td>d = 30' d = 44' d = 72'</td>
<td>d = 40' d = 64' d = 96'</td>
</tr>
</tbody>
</table>

*1 Bracing: rough sawn, 30 degrees between slab and bracing.

- a ... influence width of the bracing
- b ... spacing of bracing in primary-beam or secondary-beam direction, as applicable
- c ... influence width of the existing concrete column
- d ... max. permissible center-to-center distance between the concrete columns

Legend:
- A Slab edge (open)
- B Bracing with Bracing clamp B
- C Existing concrete column
Tie-back solutions

For transferring low horizontal loads (stabilization, V/100, windproofing etc.).

Around formwork beam and Lowering head H20

Max. tie-back load: 1120 lbs (5 kN)

To a beam-hole

Tie-back attached to the Tie rod 20.0mm or to a length of #5 reinforcing bar inserted into a beam hole

Max. tie-back load: 1120 lbs (5 kN)

WARNING

Never attach the tie-back directly to a head unit or floor prop

H Horizontal load
V Vertical load
A Back-stay force
General remarks

Secondary-beam stabilizers

Secondary-beam stabilizers are used to prevent formwork beams tipping over while plywood sheets are being laid on them.

Advantages:
▪ Special claws to prevent slippage on the beam-flange
▪ No work-platform scaffold needed, as the stabilizers can be installed/removed from ground level using an Alu beam fork H20
▪ Needs only small quantities, as the Secondary-beam stabilizers can be re-set in tandem with the formwork erection cycle:
 - approx. 20 Secondary-beam stabilizers 1
 - approx. 10 Secondary-beam stabilizers 2

Note:
In certain special situations, (e.g. when forming inclined floor-slabs), Secondary-beam stabilizers can also be used for transferring horizontal loads.
For more information, please contact your Doka-technician.

Installation:
➤ Hang the Secondary-beam stabilizers into place with an Alu beam fork H20.

The secondary beam is now held in place.
➤ Lay the plywood sheets.
➤ After the plywood sheets have been laid, unhook and remove the Secondary-beam stabilizers with an Alu beam fork H20.
Combining Doka table systems

Because the superstructures of all Doka floor-slab systems share the same basic structure, they can also be used together on the site.

Dokamatic S and Dokaflex tables

The Doka tables are pre-assembled, and save on both labor and crane time. With the DoKart, the tables can easily be traveled to their next location by just one man working on his own. The system is optimized to give the very shortest forming times on large areas, and copes well with varying structural-design and geometrical requirements.

For more information see the 'Dokamatic S table', 'Dokaflex table', or 'Doka load-bearing tower Staxo 100' User Information booklets.
Tables around edges of slab

It can be advantageous to combine Dokaflex S with Dokamatic S tables, particularly in edge-zones. This is an easy, safe way of forming drop-beams and slab stop-ends, and of erecting safety railings.

For more information see the 'Dokamatic S table', 'Dokaflex table', or 'Doka load-bearing tower Staxo 100' User Information booklets.

With edge floor-beam

Without edge floor-beam

The 10 kip shoring tower can be combined with Dokaflex S where a downturned beam needs to be formed.
Safety railings

Safeguarding the edges of floor-slabs

Handrail clamp S

Areas of use:
- concrete floor-slabs
- platforms
- floor-slab formwork
- wall formwork

Clamped to floor-slabs or other parts of the structure with an overall height of between 1" and 1'-5".

Safeguarding perimeter formwork

with Handrail post T 1.80m

The Handrail post T 1.80m is ideal for constructing high barriers up to 6'-0" in height with perimeter walkway surfaces.

Follow the directions in the User Information booklet "Handrail clamp S"!

Threaded-fastener material required
- 2 hexagon bolts M20x90
- 2 hexagon nuts M20
- 2 washers R22
(not included with product)
Doka service offerings

Doka customer training

Formwork training pays

Forming operations account for the lion’s share of labor costs on concrete construction sites. Modern formwork equipment helps to rationalize operations. Additional efficiency is gained with an optimization of the complete construction circle.

This requires not only better equipment, but also greater skill in making optimum use of this equipment. Doka can help here, with its specialist training program - to help each and every member of the team do his bit towards boosting efficiency and lowering costs.

Doka customer training events also look at the formwork equipment and handling methods that are needed in order to achieve optimum safety - giving your people knowledge and awareness which can only enhance workplace safety on the site.

You'll find the Doka training program well worth looking into.

The Doka branch in your region will be pleased to tell you more about Doka's various training offerings.
General remarks

User Information Dokaflex S

Shoring system, reshoring, concrete technology and stripping

What is a shoring system?

In multilevel cast-in-place building construction, freshly cast floors are supported by a system of formwork, shoring and reshores that distribute the weight of the concrete floor, reinforcement, formwork, shoring, reshores and construction live loads into the previously cast floors.

Once the newly cast floor has attained sufficient strength to support itself, the forming system, shores and reshores are cycled in such a manner as to avoid overstressing of the previously cast slabs.

The method of shoring and reshoring of slabs is critical to prevent the possibility of partial or total failure of the structure due to construction overloads. Improper reshoring or premature removal of the supports and inadequate lateral bracing causes most horizontal formwork systems failures.

It is imperative that a proper engineering analysis that considers both the construction load distribution and early age load carrying capacity of the floor-slab is performed before the shoring and reshoring operation begins.

Why put up reshoring props after stripping the formwork?

Depending on the construction sequence, reshoring props may be needed to carry live loads on the new floor-slab, and/or concreting-loads from the next floor to be poured.

Reshoring props have the job of spreading loads between the freshly cast slab and the floor beneath it. This load distribution will depend on the stiffness of the shoring/reshoring system, flexural stiffness of the slab and the rate of construction.

A compressible shore/reshoring system tends to shift more slab loads to the uppermost floors as compared to more rigid shore/reshores. An example is a comparison between wood and steel shoring and reshoring props with the wood being more compressible than steel.

The increase in slab stiffness, as a result of concrete strength gain during construction does not significantly affect the load distribution between slabs. An increase in the slab stiffness due to beams, drop panels and changes in slab thickness in a slab will result in a higher resistance to construction loads because of stiffer members within the slab.

Early age concrete strength gain does have a significant effect on the slab’s resistance to cracking and deflection.

What guidelines can be used for shoring and reshoring?

The American Concrete Institute, Committee 347 has issued two references that provide basic guidelines for general formwork operations.

The first is ACI 347R-14 ‘Guide to Formwork for Concrete’ and the second is ACI 347.2R-17 ‘Guide for Shoring/Reshoring of Concrete Multistory Buildings’.

Both of these guidelines describe methods to evaluate the effects of the shoring and reshoring operation that can be used by the engineer/architect to determine the structural behavior of the building during construction.

The contractor, formwork designer and engineer/architect should collaborate to develop a rational shoring/reshoring design that is economical, functional and safe.

Positioning the reshoring props correctly

Reshoring props have the job of spreading loads between the new floor-slab and the floor beneath it. This load distribution will depend on the relationship between the rigidity of these two floor-slabs.

NOTICE

As a rule, the question of using reshoring props should be referred to the responsible experts, regardless of the information given above.
Strength development in the new concrete

Effect of temperature of curing upon compressive strength of Type I, II and IV concrete. (The temperatures given are the mean temperatures encountered during the period of curing).

Deflection of the new concrete

The modulus of elasticity of the concrete develops more quickly than its compressive strength. At a compressive strength f_{ck} of about 60 %, the concrete’s modulus of elasticity $E_{c(28)}$ has reached approximately 90 %.

The increase in the elastic deformation taking place in the new concrete is thus only negligible.

The creep deformation, which only finally ceases after several years, is several times more than the elastic deformation.

Early stripping – e.g. after 3 days instead of 28 – thus only leads to an increase in the total deformation of less than 5 %.

The part of this deformation accounted for by creep deformation, however, may be anything between 50 % and 100 % of the standard value, due to such variable influences as the strength of the aggregates, and the atmospheric humidity. This means that the total deflection of the floor-slab is practically independent of the time at which the formwork was struck.

Cracks in new concrete

The bonding strength between the reinforcement steel and the concrete develops more rapidly in the new concrete than does its compressive strength. This means that early stripping does not have any negative influence upon the size and distribution of cracks on the tension side of reinforced concrete constructions.

Other cracking phenomena can be countered effectively by appropriate curing methods.

Curing of new concrete

New site-placed concrete is exposed to influences which may cause cracking and slow down its strength development:

- premature drying
- over-rapid cooling in the first few days
- excessively low temperatures or frost
- mechanical damage to the surface of the concrete
- etc.

The simplest precaution is to leave the formwork on the concrete surface for longer. As well as the familiar extra curing measures, this measure should be carried out in any case.

Stripping the formwork from wide-spanned floor-slabs with support centers over 24’- 6”

In the case of thin, wide-spanned concrete floor-slabs (e.g. in multistory car parks), the following points must be remembered:

- When the formwork is removed from beneath these floor-slab spans (i.e. when the load is taken off the floor props), the floor props that are still in place are briefly subjected to additional loads. This may lead to overloading, and to the floor props being damaged.
- When planning and designing floor formworks for these very thin concrete floor slabs, it is thus essential to allow for the loads occurring during formwork removal, as well as for the usual design loads.

Please consult your Doka technician.

NOTICE

The basic rule is:

- The formwork should be removed starting from the middle of the floor slab (i.e. from mid-span), and working towards the edges.
- It is imperative to adopt this procedure for wide spans!
Formwork planning with Tipos-Doka

Tipos-Doka helps you to form even more cost-efficiently

Tipos-Doka was developed to assist you in planning your Doka formwork assignments. For wall formwork, floor formwork and platforms, it puts the same tools into your hands that we at Doka use ourselves for formwork planning.

Easy to use, fast and accurate results

The easy-to-use interface makes for very fast working. From when you input your layout (with the “Schaligl®” on-screen assistant), all the way through to when you manually put the finishing touches to the formwork solution the program gives you. All this saves time - yours.

With the program’s many templates and wizards, you can be sure of always getting the optimum technical and economical solution to your formwork task. This makes for greater operational reliability, and cuts costs.

You can get to work right away with the piece-lists, plans, views, sections and perspective drawings that the program gives you. Operational reliability is also enhanced by the high level of detail of the plans.

Always the right quantities of formwork and accessories

You can import the automatically generated piece-lists into many other programs for further processing.

Formwork components and accessories that have to be organized at short notice, or replaced by improvisation, are the ones that cost the most. This is why Tipos-Doka gives you complete piece-lists that leave no room for improvisation. Planning with Tipos-Doka eliminates costs before they have a chance to even arise. And your depot can make the best possible use of its stocks.
Transporting, stacking and storing

Utilize the benefits of Doka multi-trip packaging on your worksite.
Our Multi-trip packaging such as transport boxes, stacking pallets, accessory boxes and skeleton transport boxes keep everything in place on the site.

Doka skeleton transport box
1.70x0.80m

Storage and transport devices for small items:
▪ durable
▪ stackable

Suitable transport appliances:
▪ crane
▪ pallet stacking truck
▪ forklift truck

To make the Doka skeleton transport box easier to load and unload, one of its sidewalls can be opened.

Max. load: 700 kg (1540 lbs)
Permitted imposed load: 3150 kg (6950 lbs)

NOTICE
▪ Multi-trip packaging items that each contain very different loads must be stacked with the heaviest ones at the bottom and the lightest ones at the top!
▪ The rating plate must be in place and clearly legible.

Using Doka skeleton transport boxes 1.70x0.80m as storage units

<table>
<thead>
<tr>
<th>Max. n° of boxes on top of one another</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoors (on the site)</td>
</tr>
<tr>
<td>Floor gradient up to 3%</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

It is not allowed to stack empty pallets on top of one another!

Using Doka skeleton transport boxes 1.70x0.80m as transport devices

Lifting by crane

NOTICE
▪ Multi-trip packaging items may only be lifted one at a time.
▪ Only lift the boxes when their sidewalls are closed!
▪ Use a suitable lifting chain (e.g. Doka 4-part chain 3.20m).
▪ Do not exceed permitted load capacity.
▪ Spread-angle β max. 30°!

Shifting boxes with the forklift or pallet stacking truck

The forks can be inserted under either the broadside or the narrowside of the containers.
Doka multi-trip transport box
1.20x0.80m

Storage and transport devices for small items:
- durable
- stackable

Suitable transport appliances:
- crane
- pallet stacking truck
- forklift truck

Max. load: 1500 kg (3300 lbs)
Permitted imposed load: 7850 kg (17305 lbs)

NOTICE
- Multi-trip packaging items that each contain very different loads must be stacked with the heaviest ones at the bottom and the lightest ones at the top!
- The rating plate must be in place and clearly legible.

Multi-trip transport box partition

Different items in the Multi-trip transport box can be kept separate with the Multi-trip transport box partitions 1.20m or 0.80m.

Possible ways of dividing the box

<table>
<thead>
<tr>
<th>Multi-trip transport box partition</th>
<th>Lengthways</th>
<th>Crossways</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.20m</td>
<td>max. 3 partitions</td>
<td>-</td>
</tr>
<tr>
<td>0.80m</td>
<td>-</td>
<td>max. 3 partitions</td>
</tr>
</tbody>
</table>

Using Doka multi-trip transport boxes as storage units

Max. n° of boxes on top of one another

<table>
<thead>
<tr>
<th>Outdoors (on the site)</th>
<th>Indoors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor gradient up to 3%</td>
<td>Floor gradient up to 1%</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

It is not allowed to stack empty pallets on top of one another!

Using Doka multi-trip transport boxes as transport devices

Lifting by crane

NOTICE
- Multi-trip packaging items may only be lifted one at a time.
- Use a suitable lifting chain (e.g. Doka 4-part chain 3.20m).
- Do not exceed permitted load capacity.
- Spread-angle β max. 30°!

Shifting boxes with the forklift or pallet stacking truck

The forks can be inserted under either the broadside or the narrowside of the containers.
Doka stacking pallet 1.55x0.85m and 1.20x0.80m

Storage and transport devices for long items:
- durable
- stackable

Suitable transport appliances:
- crane
- pallet stacking truck
- forklift truck

<table>
<thead>
<tr>
<th>Max. load: 1100 kg (2420 lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permitted imposed load: 5900 kg (12980 lbs)</td>
</tr>
</tbody>
</table>

Using Doka stacking pallets as storage units

Max. n° of boxes on top of one another

<table>
<thead>
<tr>
<th>Outdoors (on the site)</th>
<th>Indoors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor gradient up to 3%</td>
<td>Floor gradient up to 1%</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Note:

Use with Bolt-on caster set B:
Always apply the parking brake when the container is 'parked'.
When Doka stacking pallets are stacked, the bottom pallet must NOT be one with a bolt-on caster set mounted to it.

Using Doka stacking pallets as transport devices

Lifting by crane

NOTICE
- Multi-trip packaging items may only be lifted one at a time.
- Use a suitable lifting chain (e.g. Doka 4-part chain 3.20m).
- Do not exceed permitted load capacity.
- Load the items centrally.
- Fasten the load to the stacking pallet so that it cannot slide or tip out.
- Spread-angle β max. 30°!

Shifting boxes with the forklift or pallet stacking truck

NOTICE
- Load the items centrally.
- Fasten the load to the stacking pallet so that it cannot slide or tip out.

<table>
<thead>
<tr>
<th>Doka stacking pallet 1.55x0.85m</th>
<th>max. 4.5 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doka stacking pallet 1.20x0.80m</td>
<td>max. 3.0 m</td>
</tr>
</tbody>
</table>
Doka accessory box

Storage and transport devices for small items:
▪ durable
▪ stackable

Suitable transport appliances:
▪ crane
▪ pallet stacking truck
▪ forklift truck

All connectors and anchoring components can be stored neatly in this box and the boxes can be stacked.

| Max. load-bearing capacity: 1000 kg (2200 lbs) |
| Permitted imposed load: 5530 kg (12191 lbs) |

Using Doka accessory boxes as storage units

Max. n° of boxes on top of one another

<table>
<thead>
<tr>
<th>Outdoors (on the site)</th>
<th>Indoors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor gradient up to 3%</td>
<td>Floor gradient up to 1%</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Do not stack empty pallets on top of one another!

Note:
Use with Bolt-on caster set B:
Always apply the parking brake when the container is 'parked'.
When Doka stacking pallets are stacked, the bottom pallet must NOT be one with a bolt-on caster set mounted to it.

Using Doka accessory boxes as transport devices

Lifting by crane

NOTICE
▪ Multi-trip packaging items may only be lifted one at a time.
▪ Use a suitable lifting chain (e.g. Doka 4-part chain 3.20m).
 Do not exceed permitted load capacity.
▪ Spread-angle β max. 30°!

Shifting boxes with the forklift or pallet stacking truck

The forks can be inserted under either the broadside or the narrowside of the containers.

Bolt-on caster set B

The Bolt-on caster set B turns the stacking pallet into a fast and maneuverable transport trolley.
Suitable for drive-through access openings > 90 cm.

The Bolt-on caster set B can be mounted to the following multi-trip packaging items:
▪ Doka accessory box
▪ Doka stacking pallets

Follow the directions in the 'Bolt-on caster set B' Operating Instructions!
Transporting Bracing frames Eurex

⚠️ **NOTICE**
It is not allowed to mix different sizes of bracing frames!

Max. number of Bracing frames Eurex 1.22m per pallet stack: 10 pcs.

Loading the pallet

▶ Turn the prop-holders (= the quick-fixing mechanisms) through 90°, fix them and place the frame into the Doka stacking pallet (see Close-up 1).

▶ Stack the other bracing frames alternate ways around (as shown in Close-up 2).

▶ Fasten the load to the stacking pallet so that it cannot slide or tip out.

Close-up 1

A Bracing frame Eurex 1.22m
B Prop-holder (= quick-fixing mechanism)
C Doka stacking pallet 1.55x0.85m

Close-up 2

A Bracing frame Eurex 1.22m
B Prop-holder (= quick-fixing mechanism)

ℹ️ Follow the directions in the ‘Bolt-on castor set B’ Operating Instructions!
Doka-Deckenstütze Eurex 20 top 550
- **Height**: 3'-8" (111 cm)
- **Delivery condition**: folded closed
- **Galvanized**
- **Length**: 2'-6" (75.5 cm)

Universal dismantling tool
- **Diagonale Kreuz**
- **Length**: 9'-9" - 18'-1" (298 - 550 cm)
- **Galvanized**

Universal dismantling tool
- **Diagonale Kreuz**
- **Length**: 10" (25 cm)
- **Width**: 8" (20 cm)
- **Height**: 1'-3" (38 cm)

Lowering head H20
- **Absenkkopf H20**
- **Galvanized**
- **Length**: 10" (25 cm)
- **Width**: 8" (20 cm)
- **Height**: 1'-1" (33 cm)

4-way head H20
- **Vierwegekopf H20**
- **Galvanized**
- **Length**: 10" (25 cm)
- **Width**: 8" (20 cm)
- **Height**: 1'-1" (33 cm)

Bracing frame Eurex 4'-0"
- **Aufstellrahmen Eurex 1,22m**
- **Galvanized**
- **Height**: 3'-8" (111 cm)
- **Delivery condition**: folded closed

Removable folding tripod top
- **Stützbein top**
- **Galvanized**
- **Height**: 2'-7" (80 cm)
- **Delivery condition**: folded closed

Doka floor prop Eurex 30 top 250
- **Length**: 4'-10" - 8'-2" (148 - 250 cm)
- **Height**: 1'-3" (38 cm)

Doka floor prop Eurex 30 top 300
- **Length**: 5'-8" - 9'-10" (173 - 300 cm)
- **Height**: 1'-3" (38 cm)

Doka floor prop Eurex 30 top 350
- **Length**: 6'-6" - 11'-6" (198 - 350 cm)
- **Height**: 1'-3" (38 cm)

Doka floor prop Eurex 30 top 400
- **Length**: 7'-4" - 13'-1" (223 - 400 cm)
- **Height**: 1'-3" (38 cm)

Doka floor prop Eurex 30 top 450
- **Length**: 8'-2" - 14'-9" (248 - 450 cm)
- **Height**: 1'-3" (38 cm)
<table>
<thead>
<tr>
<th>Article #</th>
<th>Article #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring locked connecting pin 16mm</td>
<td>Federbolzen 16mm</td>
</tr>
<tr>
<td>0.55</td>
<td>582528000</td>
</tr>
<tr>
<td>Supporting head H20 DF</td>
<td>Haltekopf H20 DF</td>
</tr>
<tr>
<td>1.7</td>
<td>586179000</td>
</tr>
<tr>
<td>Bracing clamp B</td>
<td>Verschwertungsklammer B</td>
</tr>
<tr>
<td>3.1</td>
<td>586195000</td>
</tr>
<tr>
<td>Lifting hook DF</td>
<td>Umsetzbügel DF</td>
</tr>
<tr>
<td>13.0</td>
<td>586077000</td>
</tr>
<tr>
<td>Lashing strap 5.00m</td>
<td>Zurrgurt 5,00m</td>
</tr>
<tr>
<td>6.2</td>
<td>586018000</td>
</tr>
<tr>
<td>Doka express anchor 16x125mm</td>
<td>Doka-Expressanker 16x125mm</td>
</tr>
<tr>
<td>0.68</td>
<td>588631000</td>
</tr>
<tr>
<td>Doka coil 16mm</td>
<td>Doka-Coil 16mm</td>
</tr>
<tr>
<td>0.02</td>
<td>588633000</td>
</tr>
<tr>
<td>Universal end-shutter support 30cm</td>
<td>Universal-Abschalwinkel 30cm</td>
</tr>
<tr>
<td>2.2</td>
<td>586232000</td>
</tr>
<tr>
<td>Wheel-around scaffold DF</td>
<td>Mobilgerüst DF</td>
</tr>
<tr>
<td>97.0</td>
<td>586157000</td>
</tr>
<tr>
<td>Wheel-around scaffold DF accessory set</td>
<td>Zubehörset Mobilgerüst DF</td>
</tr>
<tr>
<td>29.3</td>
<td>586164000</td>
</tr>
<tr>
<td>Plastic mallet 4kg</td>
<td>Kunststoffhammer 4kg</td>
</tr>
<tr>
<td>9.9</td>
<td>586097000</td>
</tr>
<tr>
<td>Alu beam fork H20</td>
<td>Alu-Trägergabel H20</td>
</tr>
<tr>
<td>5.3</td>
<td>586182000</td>
</tr>
<tr>
<td>Doka beam H20 top P 11'-6"</td>
<td>Doka-Träger H20 top P</td>
</tr>
<tr>
<td>42.5</td>
<td>189713000</td>
</tr>
<tr>
<td>Doka beam H20 top P 16'-0"</td>
<td>Doka-Träger H20 top P</td>
</tr>
<tr>
<td>59.1</td>
<td>189712000</td>
</tr>
</tbody>
</table>
Product overview

<table>
<thead>
<tr>
<th>Description</th>
<th>Article #</th>
<th>[lbs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handrail clamp S</td>
<td>580470000</td>
<td>25.4</td>
</tr>
<tr>
<td>Schutzgeländerzwinge S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handrail post T 1.80m</td>
<td>584373000</td>
<td>39.0</td>
</tr>
<tr>
<td>Einschubgeländer T 1,80m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toeboard holder T 1.80m</td>
<td>584392000</td>
<td>1.2</td>
</tr>
<tr>
<td>Fußwehrhalter T 1,80m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screw-on coupler 48mm 50</td>
<td>682002000</td>
<td>1.9</td>
</tr>
<tr>
<td>Anschraubkupplung 48mm 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scaffolding tube 1 1/2"x6'-0"</td>
<td>585070000</td>
<td>16.3</td>
</tr>
<tr>
<td>Scaffolding tube 1 1/2"x8'-0"</td>
<td>585071000</td>
<td>21.8</td>
</tr>
<tr>
<td>Scaffolding tube 1 1/2"x10'-6"</td>
<td>585072000</td>
<td>28.7</td>
</tr>
<tr>
<td>Scaffolding tube 1 1/2"x13'-0"</td>
<td>585073000</td>
<td>35.3</td>
</tr>
<tr>
<td>Scaffolding tube 1 1/2"x15'-0"</td>
<td>585074000</td>
<td>40.8</td>
</tr>
<tr>
<td>Scaffolding tube 1 1/2"x21'-0"</td>
<td>585075000</td>
<td>57.1</td>
</tr>
<tr>
<td>Gerüstrohr 1 1/2"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doka personal fall-arrest set</td>
<td>583022000</td>
<td>7.9</td>
</tr>
<tr>
<td>Doka-Auffanggurt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

User Information Dokaflex S

Multi-trip packaging

<table>
<thead>
<tr>
<th>Description</th>
<th>Article #</th>
<th>[lbs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doka skeleton transport box 1.70x0.80m</td>
<td>583012000</td>
<td>192.0</td>
</tr>
<tr>
<td>Doka-Gitterbox 1,70x,0,80m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doka multi-trip transport box 1.20x0.80m</td>
<td>583011000</td>
<td>154.0</td>
</tr>
<tr>
<td>Doka-Mehrwegcontainer 1,20x0,80m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-trip transport box partition 0.80m</td>
<td>583018000</td>
<td>8.2</td>
</tr>
<tr>
<td>Mehrwegcontainer Unterteilung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel parts galvanized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timber parts varnished yellow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doka stacking pallet 1.55x0.85m</td>
<td>586151000</td>
<td>90.4</td>
</tr>
<tr>
<td>Doka-Stapelpalette 1,55x0,85m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height: 2'-6" (77 cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doka stacking pallet 1.20x0.80m</td>
<td>583016000</td>
<td>83.8</td>
</tr>
<tr>
<td>Doka-Stapelpalette 1,20x0,80m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galvanized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height: 2'-6" (77 cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Follow the directions in the "Operating Instructions!"
<table>
<thead>
<tr>
<th>lbs</th>
<th>Article #</th>
</tr>
</thead>
<tbody>
<tr>
<td>235.0</td>
<td>583010000</td>
</tr>
</tbody>
</table>

Doka accessory box
Doka-Kleinteilebox

- Timber parts varnished yellow
- Steel parts galvanized
- Length: 5' 1" (154 cm)
- Width: 2' 9" (83 cm)
- Height: 2' 6" (77 cm)
- Special order only!

<table>
<thead>
<tr>
<th>lbs</th>
<th>Article #</th>
</tr>
</thead>
<tbody>
<tr>
<td>74.1</td>
<td>586168000</td>
</tr>
</tbody>
</table>

Bolt-on castor set B
Anklemm-Radsatz B

- Painted blue
Near to you, worldwide

Doka is one of the world leaders in developing, manufacturing and distributing formwork technology for use in all fields of the construction sector.
With more than 160 sales and logistics facilities in over 70 countries, the Doka Group has a highly efficient distribution network which ensures that equipment and technical support are provided swiftly and professionally.
An enterprise forming part of the Umdasch Group, the Doka Group employs a worldwide workforce of more than 6000.

www.doka.com/dokaflex