Allgemeine bauaufsichtliche Zulassung

Zulassungsnummer:
Z-12.5-96

Antragsteller:
Stahlwerk Annahütte
Max Aicher GmbH & Co. KG
83404 Ainring

Geltungsdauer
vom: 1. Oktober 2015
bis: 1. Oktober 2020

Zulassungsgegenstand:
Ankerstabstahl St 900/1100 mit Gewinderippen
AWM 1100
Nenndurchmesser: 15 und 20 mm

ALLGEMEINE BESTIMMUNGEN

1 Mit der allgemeinen bauaufsichtlichen Zulassung ist die Verwendbarkeit bzw. Anwendbarkeit des Zulassungsgegenstandes im Sinne der Landesbauordnungen nachgewiesen.

2 Sofern in der allgemeinen bauaufsichtlichen Zulassung Anforderungen an die besondere Sachkunde und Erfahrung der mit der Herstellung von Bauprodukten und Bauarten betrauten Personen nach den § 17 Abs. 5 Musterbauordnung entsprechenden Länderregelungen gestellt werden, ist zu beachten, dass diese Sachkunde und Erfahrung auch durch gleichwertige Nachweise anderer Mitgliedstaaten der Europäischen Union belegt werden kann. Dies gilt ggf. auch für im Rahmen des Abkommens über den Europäischen Wirtschaftsraum (EWR) oder anderer bilateraler Abkommen vorgelegte gleichwertige Nachweise.

3 Die allgemeine bauaufsichtliche Zulassung ersetzt nicht die für die Durchführung von Bauvorhaben gesetzlich vorgeschriebenen Genehmigungen, Zustimmungen und Bescheinigungen.

4 Die allgemeine bauaufsichtliche Zulassung wird unbeschadet der Rechte Dritter, insbesondere privater Schutzrechte, erteilt.

7 Die allgemeine bauaufsichtliche Zulassung wird widerruflich erteilt. Die Bestimmungen der allgemeinen bauaufsichtlichen Zulassung können nachträglich ergänzt und geändert werden, insbesondere, wenn neue technische Erkenntnisse dies erfordern.
II BESONDERE BESTIMMUNGEN

1 Zulassungsgegenstand und Anwendungsbereich

1.1 Zulassungsgegenstand

Zulassungsgegenstand ist ein warmgewalzter und aus der Walzhütte wärmebehandelter Ankerstabstahl St 900/1100 mit Gewinderippung und nahezu kreisförmigen Querschnitt. Der Nenndurchmesser beträgt 15,0 mm oder 20,0 mm. Auf der Oberfläche werden zwei sich gegenüberliegende Rippenreihen so aufgewalzt, dass sich die Rippen zu einem eingängigen Rechtsgewebe ergänzen (siehe Anlage 1).

1.2 Anwendungsbereich

Ankerstabstahl St 900/1100 mit Gewinderippen eignet sich zur Verwendung als Ankerstab für Schalungsanker und für die Verwendung als Bestandteil von Gerüstverankerungen. Er wird im Folgenden als Ankerstabstahl AWM 1100 bezeichnet.

2 Bestimmungen für den Ankerstabstahl AWM 1100

2.1 Eigenschaften und Zusammensetzung

2.1.1 Abmessungen und Metergewicht

(1) Nenndurchmesser, -gewicht und -querschnittsfläche sowie die Querschnittstoleranzen sind in Anlage 1 angegeben. Die Toleranzangaben für das Gewinde sind beim Deutschen Institut für Bautechnik hinterlegt.

(2) Der sich aus der Toleranz der Querschnittsfläche von -2 % ergebende Wert ist als 5 %-Quantil der Grundgesamtheit definiert. Die Produktion ist so einzustellen, dass die mittlere Querschnittsfläche A_p nicht kleiner als der Nenndurchmesser ist.

(3) Die Querschnittsfläche A_p wird mittels Wägung ermittelt, wobei die Rohdichte des Stahls mit 7,85 g/cm³ anzunehmen ist. Die aus dem Gewicht berechnete Querschnittsfläche ist um 3,5 % zu reduzieren, da sich die Gewinderippen nur zum Teil am Lastabtrag beteiligen. Der um 3,5 % abgeminderte Wert ist auch bei der Ermittlung der mechanischen Eigenschaften zu verwenden.

2.1.2 Mechanische Eigenschaften

(1) Die Anforderungen an die mechanisch-technologischen Eigenschaften des Ankerstabstahles AWM 1100 sind in Anlage 2 angegeben.

(2) Die Angaben der Anlage 2 sind auf die Grundgesamtheit bezogene Quantilwerte; die Merkmale Streckgrenze $R_{0.2}$, Zugfestigkeit R_m, Bruchdehnung $A_{11.3}$ und Gesamtdehnung bei Höchstkraft A_{ap} dürfen die Anforderungen um höchstens 5 % unterschreiten.

(3) Die 95 %-Quantile der Zugfestigkeit R_m einer Fertigungsmenge (Schmelze oder Herstelllos) darf höchstens 1250 N/mm² betragen.

2.1.3 Zusammensetzung

Die chemische Zusammensetzung sowie die Herstellbedingungen für Ankerstabstähle AWM 1100 nach dieser Zulassung sind beim Deutschen Institut für Bautechnik hinterlegt.

2.2 Herstellung, Transport, Lagerung und Kennzeichnung

2.2.1 Herstellung

Ankerstabstahl AWM 1100 wird warmgewalzt und aus der Walzhütte wärmebehandelt. Auf der Oberfläche werden zwei sich gegenüberliegende Rippenreihen so aufgewalzt, dass sich die Rippen zu einem eingängigen Rechtsgewebe ergänzen.
2.2.2 Verpackung, Transport, Lagerung
(1) Im Regelfall wird der Ankerstabstahl AWM 1100 in gerader Form einzeln oder gebündelt ausgeliefert. Wird der Ankerstabstahl AWM 1100 in Ausnahmefällen gebogen ausgeliefert, so gelten die Angaben in Abschnitt 3.4 uneingeschränkt. Der Lieferschein nach Abschnitt 2.2.3 ist um die Angaben aus Abschnitt 3.4 (3) und (4) zu ergänzen.
(2) Der Ankerstabstahl AWM 1100 muss stets frei sein von korrosionsfördernden Stoffen (z. B. Chloriden, Nitraten, Säuren).
(3) Es ist stets sehr sorgfältig darauf zu achten, dass der Ankerstabstahl AWM 1100 weder mechanisch beschädigt noch verschmutzt wird.

2.2.3 Kennzeichnung und Lieferschein
(1) Der in Lieferlängen oder bereits in Konfektionslängen geschnittene und gebündelte Ankerstabstahl AWM 1100 muss mit einem witterungsbeständigen und gegen mechanische Verletzungen unempfindlichen Anhängeschild mit folgender Aufschrift versehen sein:

<table>
<thead>
<tr>
<th>Herstellwerk: ...</th>
<th>Achtung! Empfindlicher Ankerstabstahl!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ankerstabstahl AWM 1100</td>
<td>Vor Korrosion geschützt transportieren</td>
</tr>
<tr>
<td>nach Zul.-Nr. Z-12.5-96</td>
<td>und lagern!</td>
</tr>
<tr>
<td>Sorte: St 900/1100 - Gewinderippung</td>
<td>Nicht beschädigen, nicht verschmutzen!</td>
</tr>
<tr>
<td>Nenndurchmesser: ... mm</td>
<td>Bitte aufbewahren und bei Beanstandung einschicken!</td>
</tr>
<tr>
<td>Schmelzen-Nr.: ...</td>
<td></td>
</tr>
<tr>
<td>Auftrags-Nr.: ...</td>
<td></td>
</tr>
<tr>
<td>Datum: ...</td>
<td></td>
</tr>
</tbody>
</table>

(2) Der Lieferschein des Ankerstabstahls AWM 1100 muss die gleichen Angaben enthalten wie das Anhängeschild nach 2.2.3 (1) und muss vom Hersteller mit dem Übereinstimmungszeichen (Ü-Zeichen) nach den Übereinstimmungszeichen-Verordnungen der Länder gekennzeichnet werden. Die Kennzeichnung darf nur erfolgen, wenn die Voraussetzungen nach Abschnitt 2.3 (Übereinstimmungsnachweis) erfüllt sind.

2.3 Übereinstimmungsnachweis

2.3.1 Allgemeines
(2) Für die Erteilung des Übereinstimmungszertifikats und die Fremdüberwachung einschließlich der dabei durchzuführenden Produktprüfungen hat der Hersteller des Ankerstabstahls AWM 1100 eine hierfür anerkannte Zertifizierungsstelle sowie eine hierfür anerkannte Überwachungsstelle einzuschalten.
(3) Die Erklärung, dass ein Übereinstimmungszertifikat erteilt ist, hat der Hersteller durch Kennzeichnung der Bauprodukte mit dem Übereinstimmungszeichen (Ü-Zeichen) unter Hinweis auf den Verwendungszweck abzugeben.
(4) Dem Deutschen Institut für Bautechnik ist von der Zertifizierungsstelle eine Kopie des von ihr erteilten Übereinstimmungszertifikats unverzüglich zur Kenntnis zu geben.
(5) Dem Deutschen Institut für Bautechnik ist zusätzlich eine Kopie des Erstprüfberichts zur Kenntnis zu geben.
2.3.2 Werkseigene Produktionskontrolle

(1) In jedem Herstellwerk ist eine werkseigene Produktionskontrolle einzurichten und durchzuführen. Unter werkseigener Produktionskontrolle wird die vom Hersteller vorzunehmende kontinuierliche Überwachung der Produktion verstanden, mit der dieser sicherstellt, dass das von ihm hergestellte Bauprodukt den Bestimmungen dieser allgemeinen bauaufsichtlichen Zulassung entspricht.

(2) Die werkseigene Produktionskontrolle soll mindestens die in der "Richtlinie für Zulassungs- und Überwachungsprüfungen für Spannstähle" des Deutschen Instituts für Bautechnik, aufgeführten Maßnahmen für Spannstabstahl einschließen. Die Prüfung der Dauerschwingfestigkeit, der Relaxation sowie des Widerstandes gegen wasserstoff-
induzierte Spannungsrisikokorrosion dürfen entfallen. Zusätzlich ist der Tragfähigkeitstestfall nach einmaligem Hin- und Zurückbiegen um 180° (Biegerollendurchmesser 6 ⋅ d₀) zu untersuchen. Die Reduzierung der Zugfestigkeit darf nicht mehr als 10 % betragen.

(3) Die Ergebnisse der werkseigenen Produktionskontrolle sind aufzuzeichnen und gemäß den in den Grundsätzen genannten Kriterien auszuwerten. Die Aufzeichnungen müssen mindestens folgende Angaben enthalten:
 - Bezeichnung des Bauprodukts bzw. des Ausgangsmaterials,
 - Art der Kontrolle oder Prüfung,
 - Datum der Herstellung und der Prüfung des Bauprodukts bzw. des Ausgangsmaterials,
 - Ergebnis der Kontrollen und Prüfungen und Vergleich mit den Anforderungen,
 - Unterschrift des für die werkseigene Produktionskontrolle Verantwortlichen.

(4) Die Aufzeichnungen sind mindestens fünf Jahre aufzubewahren und der für die Fremdüberwachung eingeschalteten Überwachungsstelle vorzulegen. Sie sind dem Deutschen Institut für Bautechnik und der zuständigen obersten Bauaufsichtsbehörde auf Verlangen vorzulegen.

2.3.3 Fremdüberwachung

(1) In jedem Herstellwerk ist die werkseigene Produktionskontrolle durch eine Fremdüber-
 wachung regelmäßig zu überprüfen, mindestens jedoch zweimal jährlich.

(2) Im Rahmen der Fremdüberwachung sind Prüfungen nach den im Abschnitt 2.3.2 (2) genannten Grundsätzen durchzuführen, sowie der Tragfähigkeitsabfall nach einmaligem Hin- und Zurückbiegen nach Abschnitt 2.3.2 (2) zu untersuchen. Es müssen auch Proben für Stichprobenprüfungen entnommen werden. Die Probenahme und die Prüfungen obliegen jeweils der anerkannten Überwachungsstelle.

3 Bestimmungen für Entwurf und Bemessung

3.1 Nachweiskonzept
(1) Für alle möglichen Lastkombinationen ist nachzuweisen:
\[S_d \leq R_d \]
mit:
\[S_d = \text{Bemessungswert der Einwirkungen} \]
\[R_d = \text{Bemessungswert des Tragwiderstands} \]
\[S_d = \gamma_F \cdot S_k \]
mit:
\[S_k = \text{charakteristischer Wert der Einwirkungen} \]
\[\gamma_F = \text{Teilsicherheitsbeiwert der Einwirkungen} \]
\[R_d = R_m / \gamma_S \]
mit:
\[R_m = \text{charakteristischer Wert des Tragwiderstands} \]
\[\gamma_S = \text{Teilsicherheitsbeiwert für den Materialwiderstand} \]

3.2 Teilsicherheitsbeiwerte
(1) Verwendung als Ankerstab in Schalungsankern
Teilsicherheitsbeiwert für die Einwirkungen
\[\gamma_F = 1,5 \]
Teilsicherheitsbeiwert für den Ankerstabstahl AWM 1100
\[\gamma_S = 1,15 \]
(2) Verwendung als Bestandteil von Gerüstverankerungen
Die Teilsicherheitsbeiwerte sind den entsprechenden Zulassungen für Gerüstverankerungen zu entnehmen.

3.3 Elastizitätsmodul
Als Rechenwert für den Elastizitätsmodul ist 202.000 N/mm² anzunehmen.

3.4 Krümmungen
(1) Kleinere Krümmungsradien als \(R = 6 \cdot d_p \) dürfen nicht angewendet werden.
(2) Zum Kaltbiegen dürfen nur Geräte verwendet werden, die eine gleichmäßige Krümmung erzeugen und keine Beschädigungen (Reibstellen) am Stahl hervorrufen.
(3) Die Festigkeits- Eigenschaften nach Anlage 2 reduzieren sich durch das Kaltbiegen im Bereich der Krümmung auf 80 % der Ausgangswerte.
(4) Das Zurückbiegen ist auszuschließen.
(5) Im Bereich der Krümmungsradien dürfen sich keine Schweißspritzer befinden.

3.5 Verbund
Im Rahmen des Zulassungsverfahrens wurde das Verbundverhalten nicht nachgewiesen.
4 Bestimmungen für die Ausführung

(1) Hinsichtlich der Behandlung und des Schutzes des Ankerstabstahls AWM 1100 an der Anwendungsstelle sind die maßgebenden Bestimmungen (z. B. Normen, Richtlinien) zu beachten.

(2) Vor jedem Einbau ist der Ankerstabstahl AWM 1100 sorgfältig auf Korrosionsnarben hin zu untersuchen. Sollten Korrosionsnarben vorhanden sein, so ist der Ankerstabstahl AWM 1100 zu entsorgen.

(3) Der Ankerstabstahl AWM 1100 muss auch während der Bearbeitung gegen mechanische Beschädigungen geschützt sein. Beschädigter Ankerstabstahl AWM 1100 darf nicht verwendet werden.

(4) Der Ankerstabstahl AWM 1100 darf nicht geschweißt werden, da die Schweißeignung im Zulassungsverfahren nicht nachgewiesen wurde.

(6) Schweißspritzer aus angrenzenden Schweißungen (beispielsweise an Bewehrungsstahl) beeinträchtigen die Gebrauchseigenschaften für den Einsatz als Schalungsanker nicht.

Sofem im vorliegenden Zulassungsbescheid keine anderen Angaben gemacht sind, wird auf folgende Bestimmungen Bezug genommen:

Deutsches Institut für Bautechnik: Deutsche Fassung EN ISO 15630-3:2010
Deutsches Institut für Bautechnik: "Richtlinie für Zulassungs- und Überwachungsprüfungen für Spannstähle", Fassung 2004

Dr.-Ing. Lars Eckfeldt
Referatsleiter

Beglaubigt
Die Angaben zu Toleranzen der Kerndurchmesser, zu den Abmessungen der Gewinderippen und zur Schraubbarkeit sind beim Fremdüberwacher und DIBt hinterlegt.
Festigkeitseigenschaften

<table>
<thead>
<tr>
<th>Nenndurchmesser</th>
<th>0,2%-Dehngrenze (Streckgrenze)</th>
<th>Zugfestigkeit</th>
<th>Kraft bei 0,2% Dehnung (Streckgrenzkraft)</th>
<th>Höchstkraft</th>
<th>Wert p²</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_p [mm]</td>
<td>R_p0,2 [N/mm²]</td>
<td>R_m [N/mm²]</td>
<td>F_p0,2 [kN]</td>
<td>F_m [kN]</td>
<td>[%]</td>
</tr>
<tr>
<td>1</td>
<td>15,0</td>
<td>900</td>
<td>1100</td>
<td>156</td>
<td>190</td>
</tr>
<tr>
<td>2</td>
<td>20,0</td>
<td>900</td>
<td>1100</td>
<td>278</td>
<td>340</td>
</tr>
</tbody>
</table>

Verformungseigenschaften

<table>
<thead>
<tr>
<th>1</th>
<th>Bruchdehnung</th>
<th>A₁₁,₃ [%]</th>
<th>7</th>
<th>5,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Gesamtdehnung bei Höchstkraft (ermittelt aus A₉ + Rₚ₀,₂/100 in [%])</td>
<td>A₉ [%]</td>
<td>3</td>
<td>5,0</td>
</tr>
<tr>
<td>3</td>
<td>Dorn durchmesser für den Biegeversuch nach DIN EN ISO 15630-3:2011-02, Abschnitt 6 (sogenannter Faltpunkt) mit Biegewinkel 180°</td>
<td>d_br [mm]</td>
<td>4 * d_p</td>
<td>-- ‡</td>
</tr>
<tr>
<td>4</td>
<td>Maximaler Tragfähigkeitsabfall nach einmaligem Hin- und Zurückbiegen um 180° (Biegerollendurchmesser: d_br = 6 * d_p) nach DIN 488-1:1984-09</td>
<td>T [%]</td>
<td>10</td>
<td>-- ‡</td>
</tr>
<tr>
<td>5</td>
<td>Kerbschlagarbeit ISO-V (-20 °C)</td>
<td>[J]</td>
<td>≥ 27</td>
<td>-- ‡</td>
</tr>
</tbody>
</table>

1) Quantile für eine statistische Wahrscheinlichkeit von W = 1 - α = 0,95 (einsichtig)
2) E = E_p = 202 000 N/mm²

Ankerstabstahl St 900/1100 mit Gewinderippen AWM 1100

Festigkeits- und Verformungseigenschaften

Anlage 2