

Die Schalungstechniker.

Wasserundurchlässigkeit - REPOXAL-2K-Kleber mit Faserbetonrohr 22mm

Art.-Nr.: 581991000

Prüfbericht

Wasserundurchlässigkeit 16-0005L

PRÜFUNG DER WASSERDICHTIGKEIT

des Systems

FRANK-Mauerstärke mit "Repoxal-Kleber lösemittelfrei"

der Max Frank GmbH & Co. KG, Leiblfing

Professor Dr.-Ing. Harald Sipple

von der IHK Regensburg öffentlich bestellter und vereidigter Sachverständiger für Betontechnologie; Schäden an Bauteilen und Bauwerken aus Beton

Oktober 1997

1. VORREMERKUNGEN

Das System FRANK-Mauerstärke mit Doppelstöpseln aus Faserzement, die nach Arbeitsanweisung des Herstellers mit einem Reaktionsharzkleber wasserdicht eingeklebt werden, ist praxisbewährt.

Der Reaktionsharzkleber zum Einkleben der Stöpsel wurde neu formuliert; er ist jetzt lösemittelfrei. Deshalb soll die Wasserdichtigkeit des Systems erneut überprüft werden.

Die Untersuchungen wurden im Auftrag der M. Frank GmbH & Co durchgeführt. Die in den Beton einzubauenden Teile - Faserzementrohr, Faserzement-Stöpsel und "Repoxal-Kleber lösemittelfrei" - wurden durch die Firma Frank zur Verfügung gestellt.

2. PRŮFAUFTRAG

Es soll die Wasserdichtigkeit des Gesamtsystems, eingebaut nach Arbeitsanweisung des Herstellers in wasserundurchlässigem Beton, nachgewiesen werden.

Damit ergeben sich zwei Prüfkriterien:

- Wassereindringtiefe außenseitig, das heißt, in die Grenzfläche Beton / Rohr-Außenwand,
- Wassereindringtiefe innenseitig, das heißt, in das Faserzementrohr, die Faserzementstöpsel und das Klebermaterial.

Geprüft wurde an würfelförmigen Probekörpern mit 20 cm Kantenlänge, in die das Abdichtungssystem mittig, horizontal eingebaut wurde. Der Wasserdruck wurde in Anlehnung an DIN 1048, Teil 5, zu 5 bar¹ für insgesamt drei Tage gewählt.

Gegenüber üblichen Verhältnissen im Bauwerk ergeben sich für den Probekörper wegen der nahezu gänzlich fehlenden Frischbetonauflast ungünstigere Verhältnisse.

^{1...} Dies entspricht 50 m Wassersäule.

3. VERSUCHSDURCHFÜHRUNG, ERGEBNISSE

3.1 Herstellung der Probekörper

Die Herstellung der Probekörper (Würfel mit Kantenlänge 20 cm) erfolgte in Anlehnung an DIN 1048, Teil I. Der Laborbeton soll einem baustellengerechten Beton der Festigkeitsklasse B25, wasserundurchlässig nach DIN 1045, Abschn. 6.5.7.2, entsprechen. Die folgenden betontechnologischen Kenndaten wurden vorgegeben:

- B 25, wasserundurchlässig, für Außenbauteile,
- 350 kg/m³ CEM II/A-L 32,5 R (PKZ),
- w/z = 0.58,
- Verflüssiger (BV), 0,2 Gew.-%, bez. auf Zementgewicht,
- Größtkorn 32 mm Ø,
- Konsistenz KR, oberer Bereich.

Das Abdichtungssystem wurde mittig, horizontal eingebaut und in die Schalung eingespannt. Der Frischbeton wurde mit dem Innenrüttler verdichtet und nach 30 Minuten nachverdichtet.

Die Probekörper wurden nach 24 Stunden Lagerung bei 20°C ausgeschalt, anschließend unter Wasser gelagert nach DIN 1048, Teil 5. Entgegen der Vorgabe von Abschn. 6.4 der genannten Norm wurde die dem Wasserdruck auszusetzende Fläche nicht aufgerauht. Im Probenalter von 14 Tagen wurden die Faserzement-Stöpsel der einen Seite, am Tag danach die der anderen Seite nach Herstelleranweisung eingeklebt².

Der Wasserdruck von 5 bar wurde im Probenalter von 28 Tagen aufgebracht und durch ein Luftpolster (großformatiger Windkessel) über 3 Tage konstant gehalten.

² ... Die Wasserlagerung wurde für das Einkleben der Stöpsel jeweils kurzzeitig unterbrochen.

3.2 Versuchsergebnisse

Das Ausbreitmaß am Frischbeton betrug 47 cm bzw 48 cm (2 Prüfwerte).

Die Druckfestigkeit des Betons der Probekörper wurde an drei gesondert hergestellten Probewürfeln von 15 cm Kantenlänge nach DIN 1048, Teil 5, ermittelt und zu 38 N/mm² (Mittelwert) festgestellt.

Die Prüfergebnisse für die Wassereindringtiefe sind in Anlage 1 zeichnerisch wiedergegeben und werden wie folgt zusammengefaßt:

Probe- körper Nr.	Wassereindringtiefe Mauerstärke außenseitig ¹⁷ e _{w1}	Wassereindringtiefe Rohr / Stöpsel / Kleber e _{w2}
1	15 mm, 19 mm	∞0
2	27 mm, 31 mm	∞0
3	11 mm, 16 mm	∞0
4	22 mm, 20 mm	∞0
5	16 mm, 22 mm	∞0
6	20 mm, 24 mm ²⁾	~ 0

Der Probekörper wurde in der Rohrebene gespalten; die Wassereindringtiefe wurde jeweils rechts und links am Übergang zur Mauerstärke gemessen.

Tabelle 1: Wassereindringtiefen nach Druckversuch

Der Größtwert der Wassereindringtiefe betrug 40 mm; er wurde an einem umläufigen Zuschlagkorn (Sandstein) gemessen. Am Rohr selbst war die Eindringtiefe - wie angegeben - geringer.

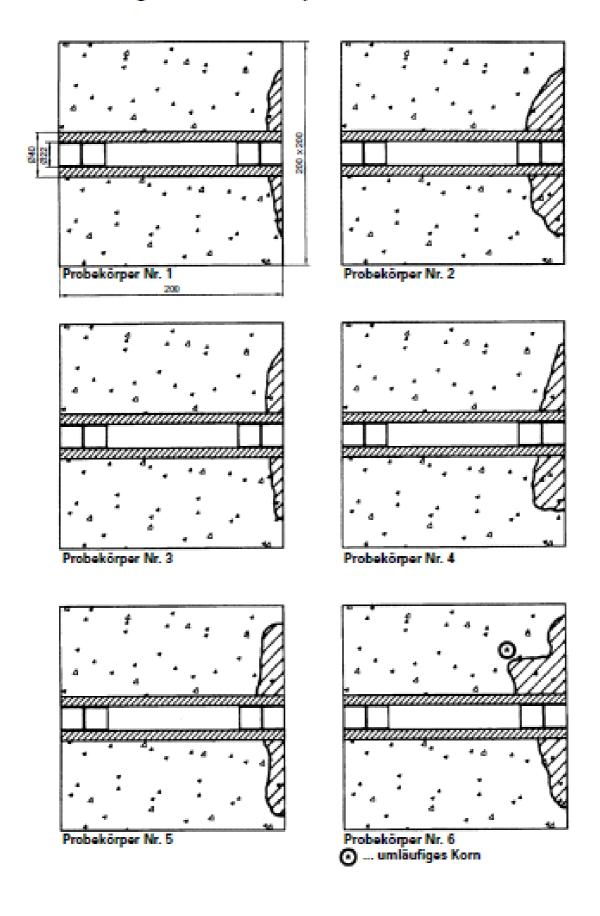
4. BEURTEILUNG

Die Wassereindringtiefe längs der Mauerstärke – also an der Grenzfläche Beton / Faserzement - ist nicht größer als die im anschließenden Beton.

Die Faserzement-Einbauteile – Faserzement-Rohr und -Stöpsel - und der Kleber selbst zeigen keine augenscheinlich feststellbare Wassereindringung.

Das Gesamtsystem FRANK-Mauerstärke mit Doppelstöpseln aus Faserzement ist nach den Versuchsergebnissen als "dicht" zu bezeichnen. Bei den Versuchskörpern wird die Wassereindringtiefe durch die Anordnung der Mauerstärke nicht vergrößert.

Anmerkungen:


Die Arbeitsanweisung des Herstellers ist zu beachten. Bei geringer Frischbetonauflast (obere Ankerlage) ist der Frischbeton nachzuverdichten.

Bei zusätzlichem chemischem Angriff aus anstehenden Böden oder Wässern ist die Beständigkeitstabelle für das Klebermaterial zu berücksichtigen.

Prof. Dr.-Ing. Harald Sipple

Wassereindringfronten der Probekörper

