

The Formwork Experts.

Water stop G 15.0

Art.-Nr.: 581807000

Test Report

sound insulation 16-0005L

Influence of tie rod systems on the sound reduction of walls

Summary of test results and assessments based on test results

report number: 16-0005L

date: 2016-08-09 responsibility: R. Kainberger

Client: Doka GmbH

Josef Umdasch Platz 1, A-3300 Amstetten

Carried out by: TAS Bauphysik GmbH

Welserstraße 35 - 39, A-4060 Leonding

Based on: "Bauakustischer Prüfbericht" no. 25225/2016 from 2016-07-26

documented by:

Bautechnisches Institut GmbH
Karl Leitl-Straße 2
4048 Puchenau bei Linz

BAUTECHNISCHES

Topic: Sound insulation according EN ISO 10140-2

Relevant standards: EN ISO 717, part 1,"Acoustics - Rating of sound insulation in buildings and of building

elements - Part 1: Airborne sound insulations" (ISO 717-1:2013); 15-6-2013

EN ISO 10140, part 1,"Laboratory measurement of sound insulation building elements - Part 1: Application rules for specific products - Amendment 2: Rainfall sound" (ISO 10140-1: 2010

+ Amd2:2014) (consolidated version); 15-9-2014

EN ISO 10140, part 2, "Acoustics - Laboratory measurements of sound insulation building elements - Part 2: Measurement of airborne sound insulation (ISO 10140-2:2010), 15-11-2010

EN ISO 10140, part 4, "Acoustics - Laboratory measurement of sound insulation building elements - Part 4: Measurement procedures and requirements" (ISO 10140-4:2010), 15-11-2010

EN ISO 10140, part 5, "Acoustics - Laboratory measurement of sound insulation building elements - Part 5: Requirements for test facilities and equipment - Amendment 1: Rainfall sound" (ISO 10140-5:2010 + Amd1:2014) (consolidated version); 1-9-2014

EN ISO 3382, part 2, "Acoustics - Measurement of room acoustic parameters - Part 2: Reverberation time in ordinary rooms" (ISO 3382-2:2008 + Cor 1:2009) (consolidated version); 15-8-2009

The Summary consists of 1 page and 24 pages of various designs.

The scope is limited to these constructions and designs.

Influence of tie rod systems on the sound reduction of walls based on laboratory measurements according EN ISO 10140-2

Client: DOKA GmbH

Josef Umdasch Platz 1, A-3300 Amstetten

no: 16-0005L

1 REPORT

Laboratory Measurement of sound insulation acc. EN ISO 10140-2

Report No. BTI: 25225

from: 2016-07-26

Measurement No.: L00 bis L14

Karl Leitl-Straße 2 A-4048 Puchenau bei Linz

L00 bis L14 BAUTECHNISCHES WWW.bti.at

2 TEST SET UP

Test wall with 10.24 m²:

The test wall is a brick wall combined with a plasterboard construction which has a sound insulation of

 $R_w(C;C_{tr}) = 68(-2;-6) dB$ (without influence of tie rods).

In this wall a 25 cm thick concrete element (size 1 m²) was installed which had 10 prepared bores for each tie rod system.

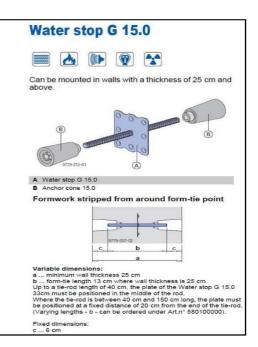
The measurements were always performed with 10 tie rods which is equivalent to

1 tie rod per m² of wall.

3 TESTED TIE ROD SYSTEM

Tie rod system 15.0 - Water stop G 15.0 33 cm

This system was not measured with this test series: Derived from other results (i.e. L12) the following result can definitely be expected:


Influence of tie rod system:

from $R_w(C;C_{tr}) = 68(-1;-5) dB$

 $t_0 R_w(C;C_{tr}) = 68(-1;-5) dB$

based on 1 tie rod / 1 m² wall

that means there is no influence of the tie rod system on the sound reduction of the wall

